diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1691/CH1/EX1.26 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1691/CH1/EX1.26')
-rwxr-xr-x | 1691/CH1/EX1.26/Example1_26.sce | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/1691/CH1/EX1.26/Example1_26.sce b/1691/CH1/EX1.26/Example1_26.sce new file mode 100755 index 000000000..ac6c767db --- /dev/null +++ b/1691/CH1/EX1.26/Example1_26.sce @@ -0,0 +1,50 @@ +//Example 1.26
+clc
+disp("Step 1: Identify topology")
+disp("The feedback voltage is applied across the resistance R_e1 and it is in series with input signal. Hence feedback is voltage series feedback")
+disp("")
+disp("Step 2 and Step 3: Find input and output circuit")
+disp("To find input circuit, set Vo = 0, which gives parallel combination of R_e1 with R_f at E1 as shown in fig 1.75. To find output circuit, set I_i = 0 opening the input node E1 at emitter of Q1, which gives series combination of R_f and R_e1 across the output. The resultant circuit is shown in fig 1.75")
+disp("")
+disp("Step 4: Find open loop voltage gain (A_v)")
+rl2=(2.2*52.5)/54.7
+format(5)
+disp(rl2,"R_L2(in k-ohm) = R_c2 || (R_f+R_e1) =")
+disp("A_i2 = -h_fe = -50")
+disp("R_i2 = h_ie = 1.2 k-ohm")
+av2=(-50*2.11)/1.2
+format(6)
+disp(av2,"A_v2 = A_i2*R_L2 / R_i2 =")
+rl1=(100*1.2)/101.2
+disp(rl1,"R_L1(in k-ohm) = R_c1 || R_i2 =")
+disp("A_i1 = -h_fe = -50")
+ri2=1.2+(51*(51*1.5/52.5))
+format(6)
+disp(ri2,"R_i1(in k-ohm) = h_ie + (1+h_fe)R_e =")
+av1=(-50*1.185)/75.51
+disp(av1,"Therefore, A_v1 = A_i1*R_L1 / R_i1 =")
+disp("The overall gain without feedback is given as")
+av=-0.784*-87.91
+disp(av,"A_v = A_v1*A_v2 =")
+disp("")
+disp("Step 5: Calculate beta")
+b=1.5/52.5
+format(7)
+disp(b,"beta = V_f/Vo =")
+disp("")
+disp("Step 6: Calculate D,A_vf, R_if, R_of")
+d=1+(0.0285*68.92)
+format(6)
+disp(d,"D = 1 + beta*A_v =")
+avf=68.92/2.964
+disp(avf,"A_vf = A_v/D =")
+ri=(75.51*200.1485)/(200.1485+75.51)
+disp(ri,"R_i(in k-ohm) = R || R_i1 =")
+rif=54.82*2.964
+format(7)
+disp(rif,"R_if(in k-ohm) = R_i/D =")
+disp("Ro = infinity because h_oe = 0")
+disp("R''_o = Ro || R_c2 || (R_f+R_e1) = Ro || R_L2 = infinity || 2.11 K = 2.11 K")
+rof=(2.11*10^3)/2.964
+format(4)
+disp(rof,"R''_of(in ohm) = R''_o/D =")
|