diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1691/CH1/EX1.21/Example1_21.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1691/CH1/EX1.21/Example1_21.sce')
-rwxr-xr-x | 1691/CH1/EX1.21/Example1_21.sce | 48 |
1 files changed, 48 insertions, 0 deletions
diff --git a/1691/CH1/EX1.21/Example1_21.sce b/1691/CH1/EX1.21/Example1_21.sce new file mode 100755 index 000000000..4d367abbb --- /dev/null +++ b/1691/CH1/EX1.21/Example1_21.sce @@ -0,0 +1,48 @@ +//Example 1.21
+clc
+disp("Step 1: Identify topology")
+disp("Making output voltage zero(Vo = 0); feedback does not become zero and hence it is not voltage sampling. By opening the output loop feedback becomes zero and hence it is a current sampling. As I_i = I_s-I_f, the feedback current appears in shunt with the input signl and hence the topology is current shunt feedback")
+disp("")
+disp("Step 2 and Step 3: Find input and output circuit")
+disp("To find input circuit, set Vo = 0. This gives series combination of 20K and 1K across the input of the first transistor. To find output circuit, set V_i= 0. This gives parallel combination of 20K and 1K at emitter of the second transistor.The resultant circuit is shown in fig 1.61")
+disp("")
+disp("Step 4: Find open circuit current gain")
+disp("A_I = Io/I_s = -I_c2/I_s = -I_c2/I_b2 * I_b2/I_c1 * I_c1/I_b1 * I_b1/I_s")
+disp("-I_c2/I_b2 = -h_fe = -100")
+disp("I_b2/I_c1 = -R_c1 / R_i2+R_c1")
+ri2=2+(101*(20/21))
+format(6)
+disp(ri2,"where R_i2(in k-ohm) = h_ie + (1+h_fe)R_e =")
+ibc=(-12)/(98.19+12)
+format(6)
+disp(ibc,"Therefore, I_b2/I_c1 =")
+disp("I_c1/I_b1 = h_fe = 100")
+ibs=(21/22)/(2+(21/22))
+disp(ibs,"I_b1/I_s =")
+ai=100*0.109*0.323*100
+format(4)
+disp(ai,"Therefore, A_I =")
+disp("")
+disp("Step 5: Calculate beta")
+b=4/(24)
+format(7)
+disp(b,"beta = I_f/Io = R_e2/R_e2+R'' =")
+disp("")
+d=1+(0.1667*352)
+format(6)
+disp(d,"Therefore, D = 1 + beta*A_I =")
+aif=352/59.67
+format(5)
+disp(aif,"A_if = A_I/D =")
+ri=((1*21*2)/((21*2)+(1*2)+(21*1)))*10^3
+format(4)
+disp(ri,"R_i(in ohm) =")
+rif=646/59.67
+format(6)
+disp(rif,"R_if(in ohm) = R_i/D =")
+disp("Ro = infinity")
+disp("Therefore, R_of = infinity because h_oe = 0")
+disp("R''_o = Ro || R_c2 = 4 k-ohm")
+disp("R''_of = R''_o = 4 k-ohm")
+avf=(5.9*4)
+disp(avf,"A_vf = A_If*R_L/R_s =")
|