diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1691/CH1/EX1.17/Example1_17.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1691/CH1/EX1.17/Example1_17.sce')
-rwxr-xr-x | 1691/CH1/EX1.17/Example1_17.sce | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/1691/CH1/EX1.17/Example1_17.sce b/1691/CH1/EX1.17/Example1_17.sce new file mode 100755 index 000000000..d0e0b720e --- /dev/null +++ b/1691/CH1/EX1.17/Example1_17.sce @@ -0,0 +1,56 @@ +//Example 1.17
+disp("Step 1: Identify topology")
+disp(" By shorting output voltage (Vo = 0), feedback voltage Vf becomes zero and hence it is voltage sampling. The feedback voltage is applied in series with the input voltage hence the topology is voltage series feedback.")
+disp("")
+disp("Step 2 and Step 3: Find input and output circuit.")
+disp(" To find input circuit, set Vo = 0. This places the parallel combination of resistor 10 K and 200 ohm at first source. To find output circuit, set Ii = 0. This places the resistor 10K and 200 ohm in series across the output. The resultant circuit is shown in fig 1.54.")
+disp("")
+disp("Step 4: Replace FET with its equivalent circuit as shown in fig.1.55.")
+disp("")
+disp("Step 5: Find open loop transfer gain.")
+disp(" Av = Vo / Vs = A_v1 * A_v2")
+disp(" A_v2 = -u*R_L2 / R_L2+r_d")
+rl2=(10.2*47)/(10.2+47) // in k-ohm
+format(5)
+disp(rl2,"where R_L2(in k-ohm) =")
+av2=(-40*8.38)/18.38
+format(7)
+disp(av2," A_v2 =")
+disp(" A_v1 = u*R_Deff / r_d+R_Deff+(1+u)*R_seff")
+rdeff=(47*1000)/(47+1000) // in k-ohm
+format(6)
+disp(rdeff," R_Deff(in k-ohm) = R_D || R_G2 =")
+av1=(-40*44.98)/(10+44.89+(41*((0.2*10)/(10+0.2))))
+disp(av1,"Therefore, A_v1 =")
+av=-28.59*-18.237
+format(7)
+disp(av,"Therefore, Av = A_v1 * A_v2 =")
+disp("")
+disp("Step 6: Calculate beta")
+beta=200/(10000)
+format(5)
+disp(beta," beta = Vf / Vo =")
+disp("")
+disp("step 7: Calculate D, A_vf, R_if, R''_of")
+d=1+(0.02*521.39)
+format(8)
+disp(d," D = 1 + Av*beta =")
+avf=521.39/11.4278
+format(6)
+disp(avf," A_vf = Av / D =")
+disp("Ri = R_G = 1 M-ohm")
+rif=11.4278
+format(8)
+disp(rif," R_if(in M-ohm) = Ri * D =")
+ro=10 // in k-ohm
+format(3)
+disp(ro," R''o(in k-ohm) = rd =")
+rof=(10*10^3)/11.4278 // in ohm
+format(4)
+disp(rof," R''_of(in ohm) = R''o / D =")
+rod=(10*8.38)/18.38
+format(6)
+disp(rod,"R''_o(in k-ohm) =")
+rofd=(4.559*10^3)/11.4278
+format(4)
+disp(rofd,"Therefore, R''_of(in ohm) = R''_o/D =")
|