summaryrefslogtreecommitdiff
path: root/1655/CH7
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1655/CH7
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1655/CH7')
-rwxr-xr-x1655/CH7/EX7.10.1/Example_7_10_1.sce18
-rwxr-xr-x1655/CH7/EX7.10.2/Example_7_10_2.sce19
-rwxr-xr-x1655/CH7/EX7.10.3/Example_7_10_3.sce19
-rwxr-xr-x1655/CH7/EX7.10.4/Example_7_10_4.sce24
-rwxr-xr-x1655/CH7/EX7.10.5/Example_7_10_5.sce20
-rwxr-xr-x1655/CH7/EX7.10.6/Example_7_10_6.sce22
-rwxr-xr-x1655/CH7/EX7.2.1/Example_7_2_1.sce12
-rwxr-xr-x1655/CH7/EX7.2.2/Example_7_2_2.sce14
-rwxr-xr-x1655/CH7/EX7.2.3/Example_7_2_3.sce16
-rwxr-xr-x1655/CH7/EX7.2.4/Example_7_2_4.sce21
-rwxr-xr-x1655/CH7/EX7.5.1/Example_7_5_1.sce15
-rwxr-xr-x1655/CH7/EX7.5.2/Example_7_5_2.sce10
-rwxr-xr-x1655/CH7/EX7.5.3/Example_7_5_3.sce19
-rwxr-xr-x1655/CH7/EX7.5.4/Example_7_5_4.sce18
-rwxr-xr-x1655/CH7/EX7.5.5/Example_7_5_5.sce22
-rwxr-xr-x1655/CH7/EX7.5.6/Example_7_5_6.sce18
-rwxr-xr-x1655/CH7/EX7.5.7/Example_7_5_7.sce22
-rwxr-xr-x1655/CH7/EX7.5.8/Example_7_5_8.sce10
-rwxr-xr-x1655/CH7/EX7.8.1/Example_7_8_1.sce20
-rwxr-xr-x1655/CH7/EX7.8.2/Example_7_8_2.sce17
-rwxr-xr-x1655/CH7/EX7.9.1/Example_7_9_1.sce19
-rwxr-xr-x1655/CH7/EX7.9.2/Example_7_9_2.sce27
22 files changed, 402 insertions, 0 deletions
diff --git a/1655/CH7/EX7.10.1/Example_7_10_1.sce b/1655/CH7/EX7.10.1/Example_7_10_1.sce
new file mode 100755
index 000000000..14033bb6c
--- /dev/null
+++ b/1655/CH7/EX7.10.1/Example_7_10_1.sce
@@ -0,0 +1,18 @@
+// Example 7.10.1 page 7.53
+
+clc;
+clear;
+
+lamda=0.85d-6;
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+eta=75/100; //quantum efficiency
+P0=0.6d-6; //incident optical power
+Im=15d2; //avalanche gain
+
+R= eta*q*lamda/(h*c); //computing responsivity
+Ip=10^8*P0*R; //computing photocurrent
+Ip=floor(Ip);
+M=Im/Ip; //computing multiplication factor
+printf("\nMultiplication factor is %d.",M);
diff --git a/1655/CH7/EX7.10.2/Example_7_10_2.sce b/1655/CH7/EX7.10.2/Example_7_10_2.sce
new file mode 100755
index 000000000..5545b5623
--- /dev/null
+++ b/1655/CH7/EX7.10.2/Example_7_10_2.sce
@@ -0,0 +1,19 @@
+// Example 7.10.3 page 7.54
+
+clc;
+clear;
+
+lamda=900d-9;
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+eta=65/100; //quantum efficiency
+P0=0.5d-6; //incident optical power
+Im=10d2; //avalanche gain
+
+R= eta*q*lamda/(h*c); //computing responsivity
+Ip=10^8*P0*R; //computing photocurrent
+M=Im/Ip; //computing multiplication factor
+printf("\nMultiplication factor is %d.",M);
+
+//answer in the book is 41.7 deviation 0.3.
diff --git a/1655/CH7/EX7.10.3/Example_7_10_3.sce b/1655/CH7/EX7.10.3/Example_7_10_3.sce
new file mode 100755
index 000000000..1eb02e56f
--- /dev/null
+++ b/1655/CH7/EX7.10.3/Example_7_10_3.sce
@@ -0,0 +1,19 @@
+// Example 7.10.3 page 7.54
+
+clc;
+clear;
+
+lamda=900d-9;
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+eta=65/100; //quantum efficiency
+P0=0.5d-6; //incident optical power
+Im=10d2; //avalanche gain
+
+R= eta*q*lamda/(h*c); //computong responsivity
+Ip=10^8*P0*R; //computing photocurrent
+Ip=floor(Ip);
+M=Im/Ip; //computing multiplication factor
+printf("\nMultiplication factor is %d.",M);
+
diff --git a/1655/CH7/EX7.10.4/Example_7_10_4.sce b/1655/CH7/EX7.10.4/Example_7_10_4.sce
new file mode 100755
index 000000000..36f873609
--- /dev/null
+++ b/1655/CH7/EX7.10.4/Example_7_10_4.sce
@@ -0,0 +1,24 @@
+// Example 7.10.4 page 7.54
+
+clc;
+clear;
+
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.602d-19; //charge of electron
+eta=70/100; //quantum efficiency
+P0=0.5d-6; //incident optical power
+Ip=4d-6; //avalanche gain
+E=1.5d-19;
+
+lamda=h*c/(E); //computing wavelength
+R= eta*q*lamda/(h*c); //computing responsivity
+P0=Ip/R; //computing optical power
+
+lamda=lamda*10^6;
+P0=P0*10^6;
+printf("\nWavelength is %.3f micrometer.\nResponsivity is %.4f A/W.\nOptical power is %.2f microWatt.",lamda,R,P0);
+
+//answer of optical power in the book is 5.53 microWatt, deviation of 0.17 microWatt.
+
+
diff --git a/1655/CH7/EX7.10.5/Example_7_10_5.sce b/1655/CH7/EX7.10.5/Example_7_10_5.sce
new file mode 100755
index 000000000..c158acc50
--- /dev/null
+++ b/1655/CH7/EX7.10.5/Example_7_10_5.sce
@@ -0,0 +1,20 @@
+// Example 7.10.5 page 7.55
+
+clc;
+clear;
+
+lamda=900d-9;
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+eta=65/100; //quantum efficiency
+P0=0.5d-6; //incident optical power
+Im=10d2; //avalanche gain
+
+R= eta*q*lamda/(h*c); //computing responsivity
+Ip=10^8*P0*R; //computing photocurrent
+Ip=floor(Ip);
+M=Im/Ip; //computing multiplication factor
+printf("\nMultiplication factor is %d.",M);
+
+//answer in the book is 42.55 deviation 0.45
diff --git a/1655/CH7/EX7.10.6/Example_7_10_6.sce b/1655/CH7/EX7.10.6/Example_7_10_6.sce
new file mode 100755
index 000000000..5885a4053
--- /dev/null
+++ b/1655/CH7/EX7.10.6/Example_7_10_6.sce
@@ -0,0 +1,22 @@
+// Example 7.10.6 page 7.55
+
+clc;
+clear;
+
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.602d-19; //charge of electron
+P0=0.5d-6; //incident optical power(assumption)
+lamda=1.5d-6; //wavelength
+M=20; //Multiplication factor
+R=0.6; //Responsivity
+
+eta=(R*h*c)/(q*lamda); //computing quantum efficiency
+Ip=P0*R; //computing photocurrent
+I=M*Ip*10^6; //computing output current
+
+printf("\nQuantum efficiency is %.3f micrometer.\nOutput current %d microAmpere.",eta,I);
+
+//answer of quantum efficiency in the book is given as 0.495, deviation of 0.001.
+
+
diff --git a/1655/CH7/EX7.2.1/Example_7_2_1.sce b/1655/CH7/EX7.2.1/Example_7_2_1.sce
new file mode 100755
index 000000000..7c4843e7b
--- /dev/null
+++ b/1655/CH7/EX7.2.1/Example_7_2_1.sce
@@ -0,0 +1,12 @@
+// Example 7.2.1 page 7.11
+
+clc;
+clear;
+
+n1=3.4; //refractive index of optical source
+n=1.46; //refractive index of silica fiber
+
+r=((n1-n)/(n1+n))^2; //computing Frensel reflection
+L=-10*log10(1-r); //computing loss
+
+printf("\nFrensel reflection is %.3f.\nPower loss is %.2f dB.",r,L);
diff --git a/1655/CH7/EX7.2.2/Example_7_2_2.sce b/1655/CH7/EX7.2.2/Example_7_2_2.sce
new file mode 100755
index 000000000..eedcb39a8
--- /dev/null
+++ b/1655/CH7/EX7.2.2/Example_7_2_2.sce
@@ -0,0 +1,14 @@
+// Example 7.2.2 page 7.11
+
+clc;
+clear;
+
+r=35d-6; //radius
+R=150; //Lambertian emission pattern
+NA=0.2; //Numerical aperture
+Pled= %pi^2*r^2*R*NA^2;
+Pled=Pled*10^7;
+printf("\nOptical power for larger core of 35 micrometer is %.3f mW.",Pled);
+r1=25d-6;
+Pled1=(r1/r)^2*Pled;
+printf("\nOptical power for smaller core of 25 micrometer is %.2f mW.",Pled1);
diff --git a/1655/CH7/EX7.2.3/Example_7_2_3.sce b/1655/CH7/EX7.2.3/Example_7_2_3.sce
new file mode 100755
index 000000000..bf72d70b1
--- /dev/null
+++ b/1655/CH7/EX7.2.3/Example_7_2_3.sce
@@ -0,0 +1,16 @@
+// Example 7.2.3 page 7.12
+
+clc;
+clear;
+
+r=25d-6; //radius
+R=39; //Lambertian emission pattern
+NA=0.25; //numerical aperture
+a=35d-6; //area
+Pc1= %pi^2*a^2*R*NA^2; //computing coupled power when r<a
+Pc1=Pc1*10^7;
+Pc= %pi^2*r^2*R*NA^2; //computing coupled power when r>a
+Pc=Pc*10^7;
+
+printf("\nOptical power when r>a is %.2f mW.\nOptical power when r<a is %.3f mW.",Pc,Pc1);
+
diff --git a/1655/CH7/EX7.2.4/Example_7_2_4.sce b/1655/CH7/EX7.2.4/Example_7_2_4.sce
new file mode 100755
index 000000000..5cd795a0c
--- /dev/null
+++ b/1655/CH7/EX7.2.4/Example_7_2_4.sce
@@ -0,0 +1,21 @@
+// Example 7.2.4 page 7.12
+
+clc;
+clear;
+
+n1=3.6; //refractive index
+n=1; //refractive index of air
+F=0.68; //transmission factor
+Pin=30/100; //percent power supplied
+
+eta =(n1*(n1+1)^2)^-1; //computing eta
+P=Pin*eta; //computing optical power emitted
+eta=eta*100;
+P=P*1000;
+Pt=P*Pin; //computing internal power
+
+printf("\neta external is %.1f percent.\nOptical power emitted is %.1f mW.\nInternal power is %.2f mW.",eta,P,Pt);
+printf("\nNote - Printing error in the book they have printed 1.5 instead of 1.3 as the answer of eta.");
+
+//Printing error in the book they have printed 1.5 instead of 1.3 as the answer of eta
+
diff --git a/1655/CH7/EX7.5.1/Example_7_5_1.sce b/1655/CH7/EX7.5.1/Example_7_5_1.sce
new file mode 100755
index 000000000..603ccf275
--- /dev/null
+++ b/1655/CH7/EX7.5.1/Example_7_5_1.sce
@@ -0,0 +1,15 @@
+// Example 7.5.1 page 7.24
+
+clc;
+clear;
+
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+e=1.6d-19; //charge of electron
+q=1.43; //Bandgap energy
+
+lamda=h*c/(q*e)*10^9; //computing wavelength
+printf("\nWavelength is %d nm",lamda);
+printf("\nThis proves that photodiode will not operate for photon of wavelength greater than %d nm.",lamda);
+
+//answer in the book 868nm; deviation of 1nm
diff --git a/1655/CH7/EX7.5.2/Example_7_5_2.sce b/1655/CH7/EX7.5.2/Example_7_5_2.sce
new file mode 100755
index 000000000..e3866eb5b
--- /dev/null
+++ b/1655/CH7/EX7.5.2/Example_7_5_2.sce
@@ -0,0 +1,10 @@
+// Example 7.5.2 page 7.24
+
+clc;
+clear;
+
+R=0.6; //responsivity
+Pin=15; //optical power in microwatt
+
+Ip=R*Pin; //computing photocurrent
+printf("\nPhotocurrent generated is %d microAmpere.",Ip);
diff --git a/1655/CH7/EX7.5.3/Example_7_5_3.sce b/1655/CH7/EX7.5.3/Example_7_5_3.sce
new file mode 100755
index 000000000..ff68835ff
--- /dev/null
+++ b/1655/CH7/EX7.5.3/Example_7_5_3.sce
@@ -0,0 +1,19 @@
+// Example 7.5.3 page 7.24
+
+clc;
+clear;
+
+lamda1=1300d-9;
+lamda2=1600d-9;
+h=6.625d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+eta=90/100; //quantum efficiency
+E=0.73; //energy gap in eV
+R1=eta*q*lamda1/(h*c);
+R2=eta*q*lamda2/(h*c);
+lamdac=1.24/E;
+
+printf("\nResponsivity at 1300nm is %.2f A/W.\nResponsivity at 1600nm is %.2f A/W.\nCut-off wavelength is %.1f micrometer.",R1,R2,lamdac);
+
+//R1 is calculated as 0.92 in the book, deviation of 0.02.
diff --git a/1655/CH7/EX7.5.4/Example_7_5_4.sce b/1655/CH7/EX7.5.4/Example_7_5_4.sce
new file mode 100755
index 000000000..046d30cf7
--- /dev/null
+++ b/1655/CH7/EX7.5.4/Example_7_5_4.sce
@@ -0,0 +1,18 @@
+// Example 7.5.4 page 7.25
+
+clc;
+clear;
+
+lamda=0.8d-6;
+h=6.625d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+ne=1.8d11; //electrons collected
+np=4d11; //photons incident
+
+eta=ne/np; //computing quantum efficiency
+R=eta*q*lamda/(h*c); //computing responsivity
+
+printf("\nResponsivity of photodiode at 0.8 micrometer is %.3f A/W.",R);
+
+//answer in the book is 0.289. deviation of 0.001 A/W
diff --git a/1655/CH7/EX7.5.5/Example_7_5_5.sce b/1655/CH7/EX7.5.5/Example_7_5_5.sce
new file mode 100755
index 000000000..458cd4ba8
--- /dev/null
+++ b/1655/CH7/EX7.5.5/Example_7_5_5.sce
@@ -0,0 +1,22 @@
+
+// Example 7.5.5 page 7.25
+
+clc;
+clear;
+
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+eta=70/100; //quantum efficiency
+I=3d-6; //photocurrent
+E=1.8d-19; //energy of photns
+q=1.6d-19; //charge of electron
+
+lamda=h*c/E; //computing wavelength
+R=eta*q*lamda/(h*c); //computing responsivity
+Popt=I/R; //computing optical power
+lamda=lamda*10^6;
+Popt=Popt*10^6;
+
+printf("\nWavelength is %.2f micrometer.\nResponsivity is %.3f A/W.\nIncident optical power required is %.3f microWatt.",lamda,R,Popt);
+
+//answer of Popt in the book is calculated as 4.823, deviation of 0.002
diff --git a/1655/CH7/EX7.5.6/Example_7_5_6.sce b/1655/CH7/EX7.5.6/Example_7_5_6.sce
new file mode 100755
index 000000000..f6343040f
--- /dev/null
+++ b/1655/CH7/EX7.5.6/Example_7_5_6.sce
@@ -0,0 +1,18 @@
+// Example 7.5.6 page 7.26
+
+clc;
+clear;
+
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+E=1.35; //energy gap in eV
+
+lamda=h*c/(q*E); //computing wavelength
+lamda=lamda*10^6;
+
+printf("\nThe InP photodetector will stop operation above %.2f micrometer.",lamda);
+printf("\nNOTE - calculation error in the book");
+
+//calculation error in the book
+//answer in the book 1.47 micrometer.(incorrect)
diff --git a/1655/CH7/EX7.5.7/Example_7_5_7.sce b/1655/CH7/EX7.5.7/Example_7_5_7.sce
new file mode 100755
index 000000000..31aa49ae6
--- /dev/null
+++ b/1655/CH7/EX7.5.7/Example_7_5_7.sce
@@ -0,0 +1,22 @@
+
+// Example 7.5.7 page 7.27
+
+clc;
+clear;
+
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+eta=65/100; //quantum efficiency
+I=2.5d-6; //photocurrent
+E=1.5d-19; //energy of photns
+q=1.6d-19; //charge of electron
+
+lamda=h*c/E; //computing wavelength
+R=eta*q*lamda/(h*c); //computing responsivity
+Popt=I/R; //computing optical power
+lamda=lamda*10^6;
+Popt=Popt*10^6;
+
+printf("\nWavelength is %.3f micrometer.\nResponsivity is %.3f A/W.\nIncident optical power required is %.1f microWatt.",lamda,R,Popt);
+
+//answer of R(responsivity) in the book is calculated as 0.694 A/W, deviation of 0.001.
diff --git a/1655/CH7/EX7.5.8/Example_7_5_8.sce b/1655/CH7/EX7.5.8/Example_7_5_8.sce
new file mode 100755
index 000000000..b28574db1
--- /dev/null
+++ b/1655/CH7/EX7.5.8/Example_7_5_8.sce
@@ -0,0 +1,10 @@
+// Example 7.5.8 page 7.27
+
+clc;
+clear;
+
+ne=3.9d6; //electrons collected
+np=6d6; //photons incident
+
+eta=100*ne/np; //computing efficiency
+printf("\nQuantum efficiency is %d percent.",eta);
diff --git a/1655/CH7/EX7.8.1/Example_7_8_1.sce b/1655/CH7/EX7.8.1/Example_7_8_1.sce
new file mode 100755
index 000000000..0993d17c8
--- /dev/null
+++ b/1655/CH7/EX7.8.1/Example_7_8_1.sce
@@ -0,0 +1,20 @@
+// Example 7.8.1 page 7.39
+
+clc;
+clear;
+
+w=25d-6; //width
+v=1d5; //velocity
+r=40d-6; //radius
+eps=12.5d-13;
+
+t=w/v; //computing drift time
+c=eps*3.14*(r)^2/w; //computing junction capacitance
+c=c*10^16;
+printf("\nDrift time %.1e sec.\nJunction capacitance %.1f pf.",t,c);
+printf("\nCalculation error in the book at the answer of drift time.");
+
+//calculation error in drift time answer in the book is 25*10^-10. it should be 2.5*10^-10.
+
+
+
diff --git a/1655/CH7/EX7.8.2/Example_7_8_2.sce b/1655/CH7/EX7.8.2/Example_7_8_2.sce
new file mode 100755
index 000000000..5b6c09f4d
--- /dev/null
+++ b/1655/CH7/EX7.8.2/Example_7_8_2.sce
@@ -0,0 +1,17 @@
+// Example 7.8.2 page 7.39
+
+clc;
+clear;
+
+w=20d-6; //width
+v=4d4; //velocity
+
+t=w/v; //computing drift time
+BW=(2*%pi*t)^-1; //computing bandwidth
+rt=1/BW; //computing response time
+rt=rt*10^9;
+
+printf("\nMaximum response time is %.1f ns.",rt);
+printf("\nNOTE - Calculation error in the book.");
+
+//Calculation error in the book, answer given is 6.2ns
diff --git a/1655/CH7/EX7.9.1/Example_7_9_1.sce b/1655/CH7/EX7.9.1/Example_7_9_1.sce
new file mode 100755
index 000000000..babda257b
--- /dev/null
+++ b/1655/CH7/EX7.9.1/Example_7_9_1.sce
@@ -0,0 +1,19 @@
+// Example 7.9.1 page 7.45
+
+clc;
+clear;
+
+lamda=1.4d-6;
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+eta=65/100; //quantum efficiency
+I=10d-9; //current
+
+NEP= h*c*sqrt(2*q*I)/(eta*q*lamda);
+D=NEP^-1;
+
+printf("\nNoise equivalent power is %.3e W.\nSpecific directivity is %.2e.",NEP,D);
+
+//answers in the book for NEP is 7.683*10^-14, deviation of 0.04*10^-14.
+//answers in the book for D is 13.01 *10^12, deviation of 0.11*10^12.
diff --git a/1655/CH7/EX7.9.2/Example_7_9_2.sce b/1655/CH7/EX7.9.2/Example_7_9_2.sce
new file mode 100755
index 000000000..56b33e754
--- /dev/null
+++ b/1655/CH7/EX7.9.2/Example_7_9_2.sce
@@ -0,0 +1,27 @@
+// Example 7.9.2 page 7.46
+
+clc;
+clear;
+
+lamda=1300d-9;
+h=6.626d-34; //plank's constant
+c=3d8; //speed of light
+q=1.6d-19; //charge of electron
+eta=90/100; //quantum efficiency
+P0=300d-9; //optical power
+Id=4; //dark current
+B=20d6; //bandwidth
+K=1.39d-23; //Boltzman constant
+T=298; //temperature
+R=1000; //load resister
+Ip= 10^9*eta*P0*q*lamda/(h*c);
+Its=10^9*(2*q*B*(Ip+Id));
+Its=sqrt(Its);
+printf("\nrms shot noise current is %.2f nA.",Its);
+
+It= 4*K*T*B/R;
+It=sqrt(It);
+printf("\nThermal noise is %.2e A.",It);
+
+//answer given in book for shot noise is 1.34nA, deviation of 0.01nA.
+//answer given in book for Thermal noise it is 1.81*10^-8 A, deviation of 0.01*10^-8.