summaryrefslogtreecommitdiff
path: root/1586/CH5
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1586/CH5
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1586/CH5')
-rw-r--r--1586/CH5/EX5.2/EXP5_2.jpgbin0 -> 132345 bytes
-rw-r--r--1586/CH5/EX5.2/EXP5_2.sce10
-rw-r--r--1586/CH5/EX5.3/EXP5_3.jpgbin0 -> 169046 bytes
-rw-r--r--1586/CH5/EX5.3/EXP5_3.sce16
-rw-r--r--1586/CH5/EX5.4/EXP5_4.jpgbin0 -> 169266 bytes
-rw-r--r--1586/CH5/EX5.4/EXP5_4.sce9
-rw-r--r--1586/CH5/EX5.5/EXP5_5.jpgbin0 -> 183225 bytes
-rw-r--r--1586/CH5/EX5.5/EXP5_5.sce26
-rw-r--r--1586/CH5/EX5.6/EXP5_6.jpgbin0 -> 205861 bytes
-rw-r--r--1586/CH5/EX5.6/EXP5_6.sce32
-rw-r--r--1586/CH5/EX5.8/EXP5_8.jpgbin0 -> 195614 bytes
-rw-r--r--1586/CH5/EX5.8/EXP5_8.sce15
12 files changed, 108 insertions, 0 deletions
diff --git a/1586/CH5/EX5.2/EXP5_2.jpg b/1586/CH5/EX5.2/EXP5_2.jpg
new file mode 100644
index 000000000..f61fb8692
--- /dev/null
+++ b/1586/CH5/EX5.2/EXP5_2.jpg
Binary files differ
diff --git a/1586/CH5/EX5.2/EXP5_2.sce b/1586/CH5/EX5.2/EXP5_2.sce
new file mode 100644
index 000000000..9038f81cd
--- /dev/null
+++ b/1586/CH5/EX5.2/EXP5_2.sce
@@ -0,0 +1,10 @@
+clc;funcprot(0);//EXAMPLE 5.2
+// Initialisation of Variables
+R1=5*10^8;.........//The rate of moement of interstitial atoms in jumps/s 500 degree celsius
+R2=8*10^10;.........//The rate of moement of interstitial atoms in jumps/s 800 degree celsius
+T1=500;..........//Temperature at first jump in Degree celsius
+T2=800;..........//Temperature at second jump in Degree celsius
+R=1.987;..........//Gas constant in cal/mol-K
+//CALCULATIONS
+Q=log(R2/R1)/(exp(1/(R*(T1+273)))-exp(1/(R*(T2+273))));.....//Activation Energy for Interstitial Atoms in cal/mol
+disp(Q,"Activation Energy for Interstitial Atoms in cal/mol:")
diff --git a/1586/CH5/EX5.3/EXP5_3.jpg b/1586/CH5/EX5.3/EXP5_3.jpg
new file mode 100644
index 000000000..2db405a27
--- /dev/null
+++ b/1586/CH5/EX5.3/EXP5_3.jpg
Binary files differ
diff --git a/1586/CH5/EX5.3/EXP5_3.sce b/1586/CH5/EX5.3/EXP5_3.sce
new file mode 100644
index 000000000..e4e4e0d4f
--- /dev/null
+++ b/1586/CH5/EX5.3/EXP5_3.sce
@@ -0,0 +1,16 @@
+clc;funcprot(0);//EXAMPLE 5.3
+// Initialisation of Variables
+X=0.1;.......//Thickness of SIlicon Wafer in cm
+n=8;.......//No. of atoms in silicon per cell
+ni=1;..........//No of phosphorous atoms present for every 10^7 Si atoms
+ns=400;.......//No of phosphorous atoms present for every 10^7 Si atoms
+ci1=(ni/10^7)*100;..........//Initial compositions in atomic percent
+cs1=(ns/10^7)*100;...........//Surface compositions in atomic percent
+G1=(ci1-cs1)/X;.....//concentration gradient in percent/cm
+a0=1.6*10^-22;........//The lattice parameter of silicon
+v=(10^7/n)*a0;......//volume of the unit cell in cm^3
+ci2=ni/v;..........//The compositions in atoms/cm^3
+cs2=ns/v;..........//The compositions in atoms/cm^3
+G2=(ci2-cs2)/X;.....//concentration gradient in percent/cm^3.cm
+disp(G1,"concentration gradient in percent/cm:")
+disp(G2,"concentration gradient in percent/cm^3.cm:")
diff --git a/1586/CH5/EX5.4/EXP5_4.jpg b/1586/CH5/EX5.4/EXP5_4.jpg
new file mode 100644
index 000000000..df2e7e002
--- /dev/null
+++ b/1586/CH5/EX5.4/EXP5_4.jpg
Binary files differ
diff --git a/1586/CH5/EX5.4/EXP5_4.sce b/1586/CH5/EX5.4/EXP5_4.sce
new file mode 100644
index 000000000..896c55cb7
--- /dev/null
+++ b/1586/CH5/EX5.4/EXP5_4.sce
@@ -0,0 +1,9 @@
+clc;funcprot(0);//EXAMPLE 5.3
+// Initialisation of Variables
+s=(-17415.7);.........//Slope value
+R1=8.314;........//Gas constan value in Joules/K-mol
+R2=1.987;........//Gas constan value in cal/K-mol
+Q1=(-1)*(s)*R1;......//The value of activation energy in KJ/mol
+Q2=(-1)*(s)*R2;......//The value of activation energy in Kcal/mol
+disp(Q1*10^-3,"The value of activation energy in KJ/mol")
+disp(Q2*10^-3,"The value of activation energy in Kcal/mol")
diff --git a/1586/CH5/EX5.5/EXP5_5.jpg b/1586/CH5/EX5.5/EXP5_5.jpg
new file mode 100644
index 000000000..85e21c628
--- /dev/null
+++ b/1586/CH5/EX5.5/EXP5_5.jpg
Binary files differ
diff --git a/1586/CH5/EX5.5/EXP5_5.sce b/1586/CH5/EX5.5/EXP5_5.sce
new file mode 100644
index 000000000..1c3c9449a
--- /dev/null
+++ b/1586/CH5/EX5.5/EXP5_5.sce
@@ -0,0 +1,26 @@
+clc;funcprot(0);//EXAMPLE 5.5
+// Initialisation of Variables
+N=1;..........//N0. of atoms on one side of iron bar
+H=1;..........//No. of atoms onother side of iron bar
+d=3;.......//Diameter of an impermeable cylinder in cm
+l=10;.....//Length of an impermeable cylinder in cm
+A1=50*10^18*N;..........// No. of gaseous Atoms per cm^3 on one side
+A2=50*10^18*H;..........//No. of gaseous Atom per cm^3 on one side
+B1=1*10^18*N;...........//No. of gaseous atoms per cm^3 on another side
+B2=1*10^18*H;..........//No. of gaseous atoms per cm^3 on another side
+t=973;...........//The di¤usion coefficient of nitrogen in BCC iron at 700 degree celsius in K
+Q=18300;.........//The activation energy for di¤usion of Ceramic
+Do=0.0047;.......//The pre-exponential term of ceramic
+R=1.987;.........//Gas constant in cal/mol.K
+//CALCULATIONS
+T=A1*(%pi/4)*d^2*l;....//The total number of nitrogen atoms in the container in N atoms
+LN=0.01*T/3600;......//The maximum number of atoms to be lost per second in N atoms per Second
+JN=LN/((%pi/4)*d^2);.........//The Flux of ceramic in Natoms per cm^2. sec.
+Dn=Do*exp(-Q/(R*t));........//The di¤usion coefficient of Ceramic in cm^2/Sec
+deltaX=Dn*(A1-B1)/JN;.........//minimum thickness of the membrane in cm
+LH=0.90*T/3600;........//Hydrogen atom loss per sec.
+JH=LH/((%pi/4)*d^2);.........//The Flux of ceramic in Hatoms per cm^2. sec.
+Dh=Do*exp(-Q/(R*t));........//The di¤usion coeficient of Ceramic in cm^2/Sec
+deltaX2=((1.86*10^-4)*(A2-B2))/JH;.......//Minimum thickness of the membrane in cm
+disp(deltaX,"Minimum thickness of the membrane of Natoms in cm")
+disp(deltaX2,"Minimum thickness of the membrane of Hatoms in cm")
diff --git a/1586/CH5/EX5.6/EXP5_6.jpg b/1586/CH5/EX5.6/EXP5_6.jpg
new file mode 100644
index 000000000..5ffee82c7
--- /dev/null
+++ b/1586/CH5/EX5.6/EXP5_6.jpg
Binary files differ
diff --git a/1586/CH5/EX5.6/EXP5_6.sce b/1586/CH5/EX5.6/EXP5_6.sce
new file mode 100644
index 000000000..7e83657fd
--- /dev/null
+++ b/1586/CH5/EX5.6/EXP5_6.sce
@@ -0,0 +1,32 @@
+clc;funcprot(0);//EXAMPLE 5.6
+// Initialisation of Variables
+n=2;..........//no of atoms/ cell in BCC Tungsten
+a0=3.165;..........//The lattice parameter of BCC tungsten in Angstromes
+W=n/(a0*10^-8)^3;.........//The number of tungsten atoms per cm^3
+Cth=0.01*W;......//The number of thorium atoms per cm^3
+Cg=-Cth/0.01;.......//The concentration gradient of Tungsten in atoms/cm^3.cm
+Q=120000;.........//The activation energy for diffusion of Tungsten
+Q2=90000;.........//The activation energy for diffusion of Tungsten
+Q3=66400;.........//The activation energy for diffusion of Tungsten
+Do=1.0;.......//The pre-exponential term of Tungsten
+Do2=0.74;.......//The pre-exponential term of Tungsten
+Do3=0.47;.......//The pre-exponential term of Tungsten
+R=1.987;.........//Gas constant in cal/mol.K
+t=2273;..........//The diffusion coefficient of nitrogen in BCC iron at 2000 degree celsius in K
+//CALCULATIONS
+D1=Do*exp(-Q/(R*t));........//The diffusion coeficient of Tungsten in cm^2/Sec
+J1=-D1*Cg;............//Volume Diffusion in Th atoms/cm^2.sec.
+D2=Do2*exp(-Q2/(R*t));........//The diffusion coeficient of Tungsten in cm^2/Sec
+J2=-D2*Cg;............//Grain boundary Diffusion in Th atoms/cm^2.sec.
+D3=0.47*exp(-66400/(1.987*2273));........//The diffusion coeficient of Tungsten in cm^2/Sec
+J3=-D3*Cg;............//Surfae Diffusion in Th atoms/cm^2.sec.
+
+disp(W,"The number of tungsten atoms per cm^3:")
+disp(Cth,"The number of thorium atoms per cm^3:")
+disp(Cg,"The concentration gradient of Tungsten in atoms/cm^3.cm:")
+disp(D1,"The diffusion coeficient of Tungsten in cm^2/Sec:")
+disp(J1,"Volume Diffusion in Th atoms/cm^2.sec.:")
+disp(D2,"The diffusion coeficient of Tungsten in cm^2/Sec:")
+disp(J2,"Grain boundry Diffusion in Th atoms/cm^2.sec.:")
+disp(D3*10^7,"The Surface diffusion coeficient of Tungsten in cm^2/Sec:")
+disp(J3,"Surface Diffusion in Th atoms/cm^2.sec.:")
diff --git a/1586/CH5/EX5.8/EXP5_8.jpg b/1586/CH5/EX5.8/EXP5_8.jpg
new file mode 100644
index 000000000..ab8702bfc
--- /dev/null
+++ b/1586/CH5/EX5.8/EXP5_8.jpg
Binary files differ
diff --git a/1586/CH5/EX5.8/EXP5_8.sce b/1586/CH5/EX5.8/EXP5_8.sce
new file mode 100644
index 000000000..c744c2dcf
--- /dev/null
+++ b/1586/CH5/EX5.8/EXP5_8.sce
@@ -0,0 +1,15 @@
+clc;funcprot(0);//EXAMPLE 5.8
+// Initialisation of Variables
+H=10;.......//Required time to successfully carburize a batch of 500 steel gears
+t1=1173;......//Temperature at carburizing a batch of 500 steel gears in K
+t2=1273;.......//Temperature at carburizing a batch of 500 steel gears in K
+Q=32900;.........//The activation energy for diffusion of BCC steel
+R=1.987;.........//Gas constant in cal/mol.K
+c1=1000;......//cost per hour to operate the carburizing furnace at 900degree centigrades
+c2=1500;......//Cost per hour to operate the carburizing furnace at 1000 degree centigrade
+H2=(exp(-Q /(R*t1))*H*3600)/exp(-Q /(R*t2));.......// Time requried to successfully carburize a batch of 500 steel gears at 1000 degree centigrade
+Cp1=c1*H/500;.......//The cost per Part of steel rods at 900 degree centigrade
+Cv=(c2*3.299)/500;.......//The cost per Part of steel rods at 1000 degree centigrade
+disp(H2/3600,"Time requried to successfully carburize a batch of 500 steel gears at 1000 degree centigrade:")
+disp(Cp1,"The cost of carburizing per Part of steel rods at 900 degree centigrade")
+disp(Cv,"The cost of carburizing per Part of steel rods at 1000 degree centigrade")