summaryrefslogtreecommitdiff
path: root/1553/CH7
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1553/CH7
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1553/CH7')
-rw-r--r--1553/CH7/EX7.1/7Ex1.sce22
-rw-r--r--1553/CH7/EX7.10/7Ex10.sce19
-rw-r--r--1553/CH7/EX7.11/7Ex11.sce14
-rw-r--r--1553/CH7/EX7.12/7Ex12.sce22
-rw-r--r--1553/CH7/EX7.13/7Ex13.sce19
-rw-r--r--1553/CH7/EX7.14/7Ex14.sce10
-rw-r--r--1553/CH7/EX7.2/7Ex2.sce20
-rw-r--r--1553/CH7/EX7.3/7Ex3.sce11
-rw-r--r--1553/CH7/EX7.4/7Ex4.sce21
-rw-r--r--1553/CH7/EX7.5/7Ex5.sce20
-rw-r--r--1553/CH7/EX7.6/7Ex6.sce17
-rw-r--r--1553/CH7/EX7.7/7Ex7.sce10
-rw-r--r--1553/CH7/EX7.8/7Ex8.sce15
-rw-r--r--1553/CH7/EX7.9/7Ex9.sce16
14 files changed, 236 insertions, 0 deletions
diff --git a/1553/CH7/EX7.1/7Ex1.sce b/1553/CH7/EX7.1/7Ex1.sce
new file mode 100644
index 000000000..321f1365d
--- /dev/null
+++ b/1553/CH7/EX7.1/7Ex1.sce
@@ -0,0 +1,22 @@
+//Chapter 7 Ex1
+
+clc;
+clear;
+close;
+//let number be x
+//given x-36=86-x
+//thus polynomial is: 2x-122=0
+
+mycoeff=[-122 2];
+p=poly(mycoeff,"x","coeff");
+ans=roots(p);
+printf("The number is %d",ans);
+
+
+//Alternative logic for same problem
+for x=1:99
+ if((2*x-122)==0)
+ printf("\nAlternate Logic: \nThe number is: %d",x);
+ break;
+end
+end
diff --git a/1553/CH7/EX7.10/7Ex10.sce b/1553/CH7/EX7.10/7Ex10.sce
new file mode 100644
index 000000000..9ea4b3d54
--- /dev/null
+++ b/1553/CH7/EX7.10/7Ex10.sce
@@ -0,0 +1,19 @@
+//Chapter 7 Ex10
+clc;
+clear;
+close;
+//let numbers be x and y
+
+x=poly(0,'x');
+y=(3*x-5)/4; //equation 1
+y=(5*x+6)/7; //equation 2
+for x=1:99
+ if((3*x-5)/4 ==(5*x+6)/7)
+ mprintf("x=%i \n ",x)
+ break
+ end
+end
+disp("substitute the x value in any one of the above equations to find y.");
+y=(5*x+6)/7;
+printf("\n The numbers are : %d and %d",x,y);
+
diff --git a/1553/CH7/EX7.11/7Ex11.sce b/1553/CH7/EX7.11/7Ex11.sce
new file mode 100644
index 000000000..b61655940
--- /dev/null
+++ b/1553/CH7/EX7.11/7Ex11.sce
@@ -0,0 +1,14 @@
+//Chapter 7 Ex11
+
+clc;
+close;
+
+//let tens's digit be x and unit's be x+3
+//given number=10x+(x+3)=11x+3
+//ratio is (11x+3)/(2x+3)=4/1
+//polynomial is: 3x-9=0
+
+ mycoeff=[-9 3];
+p=poly(mycoeff,"x","coeff");
+ans=11*roots(p)+3; //since given number as calculated in line 7
+printf("The number is: %d",ans);
diff --git a/1553/CH7/EX7.12/7Ex12.sce b/1553/CH7/EX7.12/7Ex12.sce
new file mode 100644
index 000000000..1e8eeddad
--- /dev/null
+++ b/1553/CH7/EX7.12/7Ex12.sce
@@ -0,0 +1,22 @@
+//Chapter 7 Ex12
+clc;
+close;
+//let ten's digit be x, thus unit's digit is 9-x
+//number=10x+9-x=9x+9
+//number obtained by reversing digits=10(9-x)+x=90-9x
+//polynomial is: 18x-144=0
+
+mycoeff=[-144 18];
+p=poly(mycoeff,"x","coeff");
+ans=9*roots(p)+9; //since given number as calculated in line 6
+printf("The number is: %d",ans);
+
+//Alternative logic for same problem
+for x=1:99
+ if((18*x-144)==0)
+
+ num=(9*x+9);
+ printf("\n Alternate logic: \n The number is: %d",num);
+ break;
+end
+end
diff --git a/1553/CH7/EX7.13/7Ex13.sce b/1553/CH7/EX7.13/7Ex13.sce
new file mode 100644
index 000000000..90a48293f
--- /dev/null
+++ b/1553/CH7/EX7.13/7Ex13.sce
@@ -0,0 +1,19 @@
+//Chapter 7 Ex13
+clc;
+clear;
+close;
+//let fraction be x/y
+
+x=poly(0,'x');
+y=(3*x+1)/2; //equation 1
+y=2*x-1; //equation 2
+for x=1:99
+ if (3*x+1)/2 ==2*x-1
+ mprintf("x=%i \n",x)
+ break
+ end
+end
+disp("substitute the x value in any one of the above equations to find y.");
+y=2*x-1;
+
+printf("\nThe fraction is %d/%d",x,y);
diff --git a/1553/CH7/EX7.14/7Ex14.sce b/1553/CH7/EX7.14/7Ex14.sce
new file mode 100644
index 000000000..cfe316738
--- /dev/null
+++ b/1553/CH7/EX7.14/7Ex14.sce
@@ -0,0 +1,10 @@
+//chapter 7 Ex14
+
+clc;
+close;
+
+//Let one number be x, tbhus other is 50-x; according to given conditions forming the polynomial p=x^2-50*x+600; solving it we get
+mycoeff=[600 -50 1];
+p=poly(mycoeff,"x","coeff");
+r=roots(p);
+printf("The two parts are: %d and %d",r(1),r(2));
diff --git a/1553/CH7/EX7.2/7Ex2.sce b/1553/CH7/EX7.2/7Ex2.sce
new file mode 100644
index 000000000..1ec9c6af3
--- /dev/null
+++ b/1553/CH7/EX7.2/7Ex2.sce
@@ -0,0 +1,20 @@
+//Chapter 7 Ex2
+clc;
+clear;
+close;
+//let number be x
+//given 7x-15=2x+10
+//thus polynomial is 5x-25=0
+
+mycoeff=[-25 5];
+p=poly(mycoeff,"x","coeff");
+ans=roots(p);
+printf("The number is: %d",ans);
+
+//Alternative logic for same problem
+for x=1:99
+ if((5*x-25)==0)
+ printf("\nAlternate logic: \nThe number is: %d",x);
+ break;
+end
+end
diff --git a/1553/CH7/EX7.3/7Ex3.sce b/1553/CH7/EX7.3/7Ex3.sce
new file mode 100644
index 000000000..d1384af51
--- /dev/null
+++ b/1553/CH7/EX7.3/7Ex3.sce
@@ -0,0 +1,11 @@
+//Chapter 7 Ex 3
+clc;
+close;
+
+//let the number be x; thus the reciprocal is 1/x and equation (e1)can be formed as:
+//x+(1/x)=13/6; converting it into a polynomial
+
+mycoeff=[6 -13 6];
+p=poly(mycoeff,"x","coeff");
+ans=roots(p);
+printf("The number is: x=%1.1f or x=%1.1f",ans(1),ans(2));
diff --git a/1553/CH7/EX7.4/7Ex4.sce b/1553/CH7/EX7.4/7Ex4.sce
new file mode 100644
index 000000000..f0d823d93
--- /dev/null
+++ b/1553/CH7/EX7.4/7Ex4.sce
@@ -0,0 +1,21 @@
+//Chapter 7 Ex4
+clc;
+clear;
+close;
+//let number be x
+//given (x/3)-(184-x)/7=8
+//thus polynomial is: 10x=720
+
+mycoeff=[-720 10];
+p=poly(mycoeff,"x","coeff");
+ans=roots(p);
+printf("The smaller number is: %d",ans);
+
+
+//Alternative logic for same problem
+for x=1:99
+ if((10*x-720)==0)
+ printf("\n Alternate logic: \n The smaller number is: %d",x);
+ break;
+end
+end
diff --git a/1553/CH7/EX7.5/7Ex5.sce b/1553/CH7/EX7.5/7Ex5.sce
new file mode 100644
index 000000000..5d1703a72
--- /dev/null
+++ b/1553/CH7/EX7.5/7Ex5.sce
@@ -0,0 +1,20 @@
+//Chapter 7 Ex5
+clc;
+clear;
+close;
+//let numbers be x and y
+
+x=poly(0,'x');
+y=x-11; //equation 1
+y=45-x; //equation 2
+for x=1:99
+ if x-11 ==45-x
+ mprintf("x=%i \n ",x)
+ break
+ end
+end
+disp("substitute the x value in any one of the above equationsto find y.");
+y=x-11;
+printf("\nThus the numbers are %d and %d: \n",x,y);
+
+
diff --git a/1553/CH7/EX7.6/7Ex6.sce b/1553/CH7/EX7.6/7Ex6.sce
new file mode 100644
index 000000000..962317f79
--- /dev/null
+++ b/1553/CH7/EX7.6/7Ex6.sce
@@ -0,0 +1,17 @@
+//Chapter 7 Ex 6
+clc;
+close;
+//let number be x nad y, then x+y=42 and x*y=437
+//absolute differenec is given by:
+
+//sum=x+y;
+Sum=42;
+
+//product=x*y;
+product=437;
+
+eq=Sum^2-4*product;
+
+//diff=x-y;
+Diff=sqrt(eq);
+printf("Required difference is: %d",Diff);
diff --git a/1553/CH7/EX7.7/7Ex7.sce b/1553/CH7/EX7.7/7Ex7.sce
new file mode 100644
index 000000000..bc4e37756
--- /dev/null
+++ b/1553/CH7/EX7.7/7Ex7.sce
@@ -0,0 +1,10 @@
+//chapter 7 Ex7
+
+clc;
+close;
+
+//Let one number be x, tbhus other is 15-x; according to given conditions forming the polynomial p=x^2+(15-x)^2; solving it we get
+mycoeff=[56 -15 1];
+p=poly(mycoeff,"x","coeff");
+r=roots(p);
+printf("The two numbers are: %d and %d",r(1),r(2));
diff --git a/1553/CH7/EX7.8/7Ex8.sce b/1553/CH7/EX7.8/7Ex8.sce
new file mode 100644
index 000000000..fed94530a
--- /dev/null
+++ b/1553/CH7/EX7.8/7Ex8.sce
@@ -0,0 +1,15 @@
+////Chapter 7 Ex 8
+clc;
+close;
+
+//Let first number be x, thus other numbers will be x+2,x+4,x+6 (since consecutive even); and the equation will be (sum/4)=27
+
+//sum=x+(x+2)+(x+4)+(x+6);
+//avg=27; //given
+//avg=sum/4;
+// given polynomial is x+(x+2)+(x+4)+(x+6)=108
+
+mycoeff=[-96 4];
+p=poly(mycoeff,"x","coeff");
+r=roots(p)+6;
+printf("The largest number is: %d",r)
diff --git a/1553/CH7/EX7.9/7Ex9.sce b/1553/CH7/EX7.9/7Ex9.sce
new file mode 100644
index 000000000..6ef55c787
--- /dev/null
+++ b/1553/CH7/EX7.9/7Ex9.sce
@@ -0,0 +1,16 @@
+//Chapter 7 Ex 9
+
+clc;
+close;
+
+//let first number be x,thus other numbers are x+2 and x+4;
+//given is x^2+(x+2)^2+(x+4)^2=2531; after solving equation is x^2+4*x-837
+ mycoeff=[-837 4 1];
+p=poly(mycoeff,"x","coeff");
+r=roots(p);
+r1=r(1)+2;
+r2=r(1)+4;
+printf("The numbers are either %d, %d, %d OR",r(1),r1,r2);
+r3=r(2)+2;
+r4=r(2)+4;
+printf(" %d, %d, %d",r(2),r3,r4);