summaryrefslogtreecommitdiff
path: root/1544/CH3
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1544/CH3
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1544/CH3')
-rwxr-xr-x1544/CH3/EX3.1/Ch03Ex1.sce10
-rwxr-xr-x1544/CH3/EX3.10/Ch03Ex10.sce23
-rwxr-xr-x1544/CH3/EX3.11/Ch03Ex11.sce21
-rwxr-xr-x1544/CH3/EX3.12/Ch03Ex12.sce43
-rwxr-xr-x1544/CH3/EX3.13/Ch03Ex13.sce13
-rwxr-xr-x1544/CH3/EX3.14/Ch03Ex14.sce13
-rwxr-xr-x1544/CH3/EX3.15/Ch03Ex15.sce14
-rwxr-xr-x1544/CH3/EX3.16/Ch03Ex16.sce21
-rwxr-xr-x1544/CH3/EX3.17/Ch03Ex17.sce27
-rwxr-xr-x1544/CH3/EX3.18/Ch03Ex18.sce10
-rwxr-xr-x1544/CH3/EX3.19/Ch03Ex19.sce19
-rwxr-xr-x1544/CH3/EX3.2/Ch03Ex2.sce15
-rwxr-xr-x1544/CH3/EX3.3/Ch03Ex3.sce18
-rwxr-xr-x1544/CH3/EX3.4/Ch03Ex4.sce23
-rwxr-xr-x1544/CH3/EX3.5/Ch03Ex5.sce19
-rwxr-xr-x1544/CH3/EX3.6/Ch03Ex6.sce12
-rwxr-xr-x1544/CH3/EX3.7/Ch03Ex7.sce12
-rwxr-xr-x1544/CH3/EX3.8/Ch03Ex8.sce19
-rwxr-xr-x1544/CH3/EX3.9/Ch03Ex9.sce11
19 files changed, 343 insertions, 0 deletions
diff --git a/1544/CH3/EX3.1/Ch03Ex1.sce b/1544/CH3/EX3.1/Ch03Ex1.sce
new file mode 100755
index 000000000..a39396408
--- /dev/null
+++ b/1544/CH3/EX3.1/Ch03Ex1.sce
@@ -0,0 +1,10 @@
+// Scilab code Ex3.1: Pg 79 (2008)
+clc; clear;
+Q = 50e-03; // Electric charge, C
+A = 600e-06; // Area of plate, m^2
+// Solving for electric field density, D
+D = Q/A; // Electric field density, C/m^2
+printf("\nThe density of the electric field existing between the plates = %4.1f C/m-square", D);
+
+// Result
+// The density of the electric field existing between the plates = 83.3 C/m-square
diff --git a/1544/CH3/EX3.10/Ch03Ex10.sce b/1544/CH3/EX3.10/Ch03Ex10.sce
new file mode 100755
index 000000000..6ec4e12d5
--- /dev/null
+++ b/1544/CH3/EX3.10/Ch03Ex10.sce
@@ -0,0 +1,23 @@
+// Scilab code Ex3.10: Pg 90-91 (2008)
+clc; clear;
+C_1 = 6e-06; //Capacitance, F
+C_2 = 4e-06; //Capacitance, F
+V = 150; // Supply voltage, V
+// Part (a)
+// The reciprocal of the resulting capacitance of capacitors connected in series is the sum of the reciprocal of the individual capacitances present in the circuit i.e 1/C = 1/C1 + 1/C2, solving for C
+C = ( C_1*C_2 )/(C_1 + C_2); // Resulting capacitance, F
+// Part (b)
+Q = V*C; // Electric charge on the capacitors, C
+// Part (c)
+V_1 = Q/C_1; // P.d across capacitor C_1, V
+V_2 = Q/C_2; // P.d across capacitor C_2, V
+printf("\nThe total capacitance of the combination = %3.1f micro-farad", C/1e-06);
+printf("\nThe charge on each capacitor = %3d micro-coulomb",Q/1e-06);
+printf("\nThe p.d. developed across %1d micro-farad capacitor = %2d V", C_1/1e-06, V_1);
+printf("\nThe p.d. developed across %1d micro-farad capacitor = %2d V", C_2/1e-06, V_2);
+
+// Result
+// The total capacitance of the combination = 2.4 micro-farad
+// The charge on each capacitor = 360 micro-coulomb
+// The p.d. developed across 6 micro-farad capacitor = 60 V
+// The p.d. developed across 4 micro-farad capacitor = 90 V
diff --git a/1544/CH3/EX3.11/Ch03Ex11.sce b/1544/CH3/EX3.11/Ch03Ex11.sce
new file mode 100755
index 000000000..079962202
--- /dev/null
+++ b/1544/CH3/EX3.11/Ch03Ex11.sce
@@ -0,0 +1,21 @@
+// Scilab code Ex3.11: Pg 91-92 (2008)
+clc; clear;
+C_1 = 3e-06; //Capacitance, F
+C_3 = 12e-06; //Capacitance, F
+C_2 = 6e-06; //Capacitance, F
+V = 400; // Supply voltage, V
+// The reciprocal of the resulting capacitance of capacitors connected in series is the sum of the reciprocal of the individual capacitances present in the circuit i.e 1/C = 1/C1 + 1/C2 + 1/C_3, solving for C
+C = (C_1 * C_2 * C_3)/( C_1*C_2 + C_2*C_3 + C_3*C_1); // Resulting capacitance, F
+Q = V*C; // Electric charge on the capacitors, C
+// Part (c)
+V_1 = Q/C_1; // P.d across capacitor C_1, V
+V_2 = Q/C_2; // P.d across capacitor C_2, V
+V_3 =Q/C_3; // P.d across capacitor C_2, V
+printf("\nP.d across capacitor %1d micro-farad = %5.1f V", C_1/1e-06, V_1);
+printf("\nP.d across capacitor %1d micro-farad = %5.1f V", C_2/1e-06, V_2);
+printf("\nP.d across capacitor %2d micro-farad = %4.1f V", C_3/1e-06, V_3);
+
+// Result
+// P.d across capacitor 3 micro-farad = 228.6 V
+// P.d across capacitor 6 micro-farad = 114.3 V
+// P.d across capacitor 12 micro-farad = 57.1 V
diff --git a/1544/CH3/EX3.12/Ch03Ex12.sce b/1544/CH3/EX3.12/Ch03Ex12.sce
new file mode 100755
index 000000000..72ddda713
--- /dev/null
+++ b/1544/CH3/EX3.12/Ch03Ex12.sce
@@ -0,0 +1,43 @@
+// Scilab code Ex3.12: Pg 92-95 (2008)
+clc; clear;
+V = 200; // Supply voltage, voltage
+C_AB = 2; // Capacitance across branch AB, micro-farad
+C_BC = 3; // Capacitance across branch BC, micro-farad
+C_CD = 6; // Capacitance across branch CD, micro-farad
+C_EF = 8; // Capacitance across branch EF, micro-farad
+C_BD = 4; // Capacitance across branch EF, micro-farad
+
+// Part (a)
+// Since 3-micro-farad & 6-micro-farad capacitors are in series & the reciprocal of the resulting capacitance of capacitors connected in series is the sum of the reciprocal of the individual capacitances present in the circuit, therefore i.e 1/C = 1/C1 + 1/C2
+C_BCD = ( C_BC*C_CD )/(C_BC+C_CD); // Resulting capacitance across branch BCD, micro-farad
+//Since C_BCD & 4-micro-farad capacitors are in parallel & the resulting capacitance of parallerly connected capacitors is the sum of the individual capacitance present in the circuit
+C_BD = C_BCD + C_BD; // Resulting capacitance across branch BD, micro-farad
+// Since 2-micro-farad & C_BD capacitors are in series & the reciprocal of the resulting capacitance of capacitors connected in series is the sum of the reciprocal of the individual capacitances present in the circuit, therefore, we have
+C_AD = (C_BD*C_AB)/(C_BD+C_AB); // Resulting capacitance across branch AD, micro-farad
+//Since C_AD & C_EF capacitors are in parallel & the resulting capacitance of parallerly connected capacitors is the sum of the individual capacitance present in the circuit
+C = C_AD + C_EF; // Resulting capacitance of the circuit, micro-farad
+Q = V*C; // Electric charge drawn from the supply, C
+
+// Part (b)
+Q_EF = V*C_EF; // The charge on the 8 micro-farad capacitor, micro-coulomb
+
+// Part (c)
+Q_AD = Q - Q_EF; // The charge on the 4 micro-farad capacitor, C
+Q_BD = Q_AD; // Charge in series combination of capacitors, micro-farad
+// Since Q = C*V, solving for V
+V_BD = Q_BD/C_BD; // The p.d. across the 4  F capacitor,V
+
+// Part(d)
+Q_BCD = V_BD*C_BCD; // Electric charge across branch BCD, C
+Q_BC = Q_BCD; // Electric charge, C
+V_BC = Q_BC/C_BC; // The p.d. across the 3 micro-farad capacitor
+printf("\nThe charge drawn from the supply = %3.1f mC", Q/1e+03);
+printf("\nThe charge on the %1d micro-farad capacitor = %3.1f mC", C_EF, Q_EF/1e+03);
+printf("\nThe p.d. across the %1d micro-farad capacitor= %2d V", C_BD, V_BD);
+printf("\nThe p.d. across the %1d micro-farad capacitor = %5.2f V", Q_BC, V_BC);
+
+// Result
+// The charge drawn from the supply = 1.9 mC
+// The charge on the 8 micro-farad capacitor = 1.6 mC
+// The p.d. across the 6 micro-farad capacitor= 50 V
+// The p.d. across the 100 micro-farad capacitor = 33.33 V
diff --git a/1544/CH3/EX3.13/Ch03Ex13.sce b/1544/CH3/EX3.13/Ch03Ex13.sce
new file mode 100755
index 000000000..f17c1e926
--- /dev/null
+++ b/1544/CH3/EX3.13/Ch03Ex13.sce
@@ -0,0 +1,13 @@
+// Scilab code Ex3.13: Pg 96 (2008)
+clc; clear;
+N = 20; // Number of plates in a capacitor
+A = 6400e-06; // Cross - sectional area of plate, m^2
+d = 1.5e-03; // Distance between plates, m
+epsilon_r = 6.4; // Relative permittivity for mica
+epsilon_o = 8.854e-12; // Relative permittivity for free space
+// Calculating the capacitance of the capacitor
+C = ((epsilon_o)*(epsilon_r)*A*(N-1))/d; // Capacitance, F
+printf("\n The capacitance of the capacitor = %3.1f nF", C/1e-09);
+
+// Result
+// The capacitance of the capacitor = 4.6 nF
diff --git a/1544/CH3/EX3.14/Ch03Ex14.sce b/1544/CH3/EX3.14/Ch03Ex14.sce
new file mode 100755
index 000000000..808b8c28e
--- /dev/null
+++ b/1544/CH3/EX3.14/Ch03Ex14.sce
@@ -0,0 +1,13 @@
+// Scilab code Ex3.14: Pg 96-97 (2008)
+clc; clear;
+N = 9; // Number of plates in a capacitor
+A = 1200e-06; // Cross - sectional area of plate, m^2
+C = 3e-10; // Capacitance, F
+epsilon_r = 5; // Relative permittivity for mica
+epsilon_o = 8.854e-12; // Relative permittivity for free space
+// Using the formula of capacitance, C = ((epsilon_o)*(epsilon_r)*A*(N-1))/d and solving for d, we have
+d = ((epsilon_o)*(epsilon_r)*A*(N-1))/C; // Distance between plates, m
+printf("\nThe thickness of mica between parallel plates of a capacitor = %4.2f mm", d/1e-03);
+
+// Result
+// The thickness of mica between parallel plates of a capacitor = 1.42 mm
diff --git a/1544/CH3/EX3.15/Ch03Ex15.sce b/1544/CH3/EX3.15/Ch03Ex15.sce
new file mode 100755
index 000000000..e370aea52
--- /dev/null
+++ b/1544/CH3/EX3.15/Ch03Ex15.sce
@@ -0,0 +1,14 @@
+// Scilab code Ex3.15: Pg 97 (2008)
+clc; clear;
+N = 11; // Number of plates in a capacitor
+r = 25e-03; // Radius of circular plate, m
+A = (%pi*r^2); // Cross - sectional area of plate, m^2
+d = 5e-04; // Distance between plates, m
+epsilon_r = 1; // Relative permittivity for air
+epsilon_o = 8.854e-12; // Relative permittivity for free space
+// Calculating the capacitance of the capacitor
+C = ((epsilon_o)*(epsilon_r)*A*(N-1))/d; // Capacitance, F
+printf("\n The capacitance of the capacitor = %3.2f pF", C/1e-10);
+
+// Result
+// The capacitance of the capacitor = 3.48 pF
diff --git a/1544/CH3/EX3.16/Ch03Ex16.sce b/1544/CH3/EX3.16/Ch03Ex16.sce
new file mode 100755
index 000000000..924ccb073
--- /dev/null
+++ b/1544/CH3/EX3.16/Ch03Ex16.sce
@@ -0,0 +1,21 @@
+// Scilab code Ex3.16: Pg 99 (2008)
+clc; clear;
+C_1 = 3e-06; // Capacitance, F
+C_2 = 6e-06; // Capacitance, F
+V_1 = 250; // Voltage across capacitor C_1, V
+// Since each capacitor will take charge according to its capacitance, so we have
+Q = C_1*V_1; // Charge on first capacitor C_1, C
+W_1 = 0.5*C_1*(V_1^2); // Energy stored, J
+// When the two capacitors are connected in parallel the 3 micro-farad will share its charge with 6 micro-farad capacitor. Thus the total charge in the system will remain unchanged, but the total capacitance will now be different
+C = C_1 + C_2; // Total capacitance, F
+// Since Q = C*V, solving for V
+V = Q/C; // Voltage across capacitor C_2, V
+W = 0.5*C*(V^2); // Total energy stored by the combination, J
+printf("\nThe charge and energy stored by %1d micro-F capcitor are %3.2f mC and %5.2f mJ respectively ", C_1/1e-06, Q/1e-03 , W_1/1e-03);
+printf("\nThe p.d. between the plates = %5.2f V", V);
+printf("\nThe energy stored by the combination of %1d micro-F and %1d micro-F capacitors = %5.2f mJ", C_1/1e-06, C_2/1e-06, W/1e-03);
+
+// Result
+// The charge and energy stored by 3 micro-F capcitor are 0.75 mC and 93.75 mJ respectively
+// The p.d. between the plates = 83.33 V
+// The energy stored by the combination of 3 micro-F and 6 micro-F capacitors = 31.25 mJ
diff --git a/1544/CH3/EX3.17/Ch03Ex17.sce b/1544/CH3/EX3.17/Ch03Ex17.sce
new file mode 100755
index 000000000..29bad772a
--- /dev/null
+++ b/1544/CH3/EX3.17/Ch03Ex17.sce
@@ -0,0 +1,27 @@
+// Scilab code Ex3.17: Pg 99-100 (2008)
+clc; clear;
+V = 200; // Supply voltage, V
+C_1 = 10e-06; // Capacitance, farad
+C_2 = 6.8e-06; // Capacitance, farad
+C_3 = 4.7e-06; // Capacitance, farad
+// Part (a)
+// Since each capacitor will take charge according to its capacitance, so we have
+Q_1 = V*C_1; // Charge sored on capacitor C_1, C
+W_1 = 0.5*C_1*(V^2); // Energy sored on capacitor C_1, J
+// Part (b)
+// Since C_2 and C_3 are in series and hence, their equivalent capacitance is given by their series combination
+C_4 = (C_2 * C_3)/(C_2 + C_3); // Equivalent capacitance of C_2 and C_3, F
+// Since C_1 and C_4 are in parallel and hence, their equivalent capacitance is given by their parallel combination
+C = C_1 + C_4; // Total capacitance of circuit, F
+// Since Q = C*V, solving for V
+V_1 = Q_1/C; // New p.d across C_1, V
+W = 0.5*C*(V_1^2); // Total energy remaining in the circuit, J
+energy_used = W_1 - W; // Energy, J
+printf("\nThe charge and energy stored by %2d micro-F capacitor are %1d mC and %2.1f J respectively ", C_1/1e-06, Q_1/1e-03, W_1);
+printf("\nThe new p.d across %2d micro-F capacitor = %5.1f V", C_1/1e-06, V_1);
+printf("\nThe amount of energy used in charging %3.1f micro-F and %3.2f micro-F capacitors from %2d micro-F capacitor = %4.3f J", C_2/1e-06, C_3/1e-06, C_1/1e-06, energy_used/1e-03);
+
+// Result
+// The charge and energy stored by 10 micro-F capacitor are 2 mC and 0.2 J respectively
+// The new p.d across 10 micro-F capacitor = 156.5 V
+// The amount of energy used in charging 6.8 micro-F and 4.70 micro-F capacitors from 10 micro-F capacitor = 43.495 J
diff --git a/1544/CH3/EX3.18/Ch03Ex18.sce b/1544/CH3/EX3.18/Ch03Ex18.sce
new file mode 100755
index 000000000..f163f7241
--- /dev/null
+++ b/1544/CH3/EX3.18/Ch03Ex18.sce
@@ -0,0 +1,10 @@
+// Scilab code Ex3.18: Pg 101 (2008)
+clc; clear;
+V = 400; // Supply voltage, V
+E = 0.5e06; // Dielectric strength, V/m
+// Since E = V/d, solving for d
+d = V/E; // Thickness of dielectric, m
+printf("\nThe minimum thickness of dielectric required = %3.1fmm", d/1e-03);
+
+// Result
+// The minimum thickness of dielectric required = 0.8 mm
diff --git a/1544/CH3/EX3.19/Ch03Ex19.sce b/1544/CH3/EX3.19/Ch03Ex19.sce
new file mode 100755
index 000000000..3f97143bd
--- /dev/null
+++ b/1544/CH3/EX3.19/Ch03Ex19.sce
@@ -0,0 +1,19 @@
+// Scilab code Ex3.19: Pg 101-102 (2008)
+clc; clear;
+C = 270e-12; // Capacitance, F
+A = 60e-04; // Cross-sectional area of plate, m^2
+E = 350e03; // Dielectric strength, V/m
+epsilon_r = 2.1; // Relative pemittivity
+epsilon_o = 8.854e-12; // Permittivity of free space
+// Part (a)
+// Since formula for capacitance, C = ((epsilon_o)*(eplison_r)*A)/d, solving for d
+d = ((epsilon_o)*(epsilon_r)*A)/C; // Thickness of dielectric, m
+// Part (b)
+// Since E = V/d, solving for V
+V = E*d; // Maximum possible working voltage, V
+printf("\nThe thickness of Teflon sheet required = %5.4f mm", d/1e-03);
+printf("\nThe maximum possible working voltage for the capacitor = %5.1f V", V);
+
+// Result
+// The thickness of Teflon sheet required = 0.413 mm
+// The maximum possible working voltage for the capacitor = 144.6 V
diff --git a/1544/CH3/EX3.2/Ch03Ex2.sce b/1544/CH3/EX3.2/Ch03Ex2.sce
new file mode 100755
index 000000000..f72926e3e
--- /dev/null
+++ b/1544/CH3/EX3.2/Ch03Ex2.sce
@@ -0,0 +1,15 @@
+// Scilab code Ex3.2: Pg 80 (2008)
+clc; clear;
+A = 400e-06; // Cross-sectional area of plate, m^2
+I = 50e-06; // Source current, A
+t = 3; // Flow time of current, s
+// Since electric current is the rate of flow of charge i.e I = Q/t, solving for Q
+Q = I*t; // Amount of charge on plates, C
+//Solving for density of the electric field between the plates
+D = Q/A; // Electric field density, C/m^2
+printf("\The charge on the plates = %3d micro-coloumb", Q/1e-06);
+printf("\nThe density of the electric field between the plates = %5.3f C/m-square", D);
+
+// Result
+// The charge on the plates = 150 micro-coloumb
+// The density of the electric field between the plates =0.375 C/m-square
diff --git a/1544/CH3/EX3.3/Ch03Ex3.sce b/1544/CH3/EX3.3/Ch03Ex3.sce
new file mode 100755
index 000000000..0ad86c1f9
--- /dev/null
+++ b/1544/CH3/EX3.3/Ch03Ex3.sce
@@ -0,0 +1,18 @@
+// Scilab code Ex3.3: Pg 83 (2008)
+clc; clear;
+d = 3e-03; // Thickness of dielectric, m
+Q = 35e-03; // Electric charge on plates, C
+V = 150; // Supply voltage, V
+A = 144e-06; // Cross-sectional area of plates, m^2
+// Part (a)
+// Since electric field strength(E) = potential gradient therefore we have
+E = V/d; // Electric field strength, V/m
+// Part (b)
+// Solving for electric field density, D
+D = Q/A; // Electric field density, C/m^2
+printf("\nThe electric field strength = %2d kV/m", E*1e-03);
+printf("\nThe flux density = %5.1f C/m^2", D);
+
+// Result
+// The electric field strength = 50 kV/m
+// The flux density = 243.1 C/m^2
diff --git a/1544/CH3/EX3.4/Ch03Ex4.sce b/1544/CH3/EX3.4/Ch03Ex4.sce
new file mode 100755
index 000000000..4c4573845
--- /dev/null
+++ b/1544/CH3/EX3.4/Ch03Ex4.sce
@@ -0,0 +1,23 @@
+// Scilab code Ex3.4: Pg 83-84 (2008)
+clc; clear;
+d = 4e-03; // Thickness of air, m
+Q = 2e-04; // Electric charge on plates, C
+V = 125; // Supply voltage, V
+D = 15; // Electric field density, coulomb-per-metre-square
+// Part (a)
+// Since electric field strength(E) = potential gradient, therefore we have
+E = V/d; // Electric field strength, V/m
+// Part (b)
+// Since D = Q/A, solving for A
+A = Q/D; // Cross-sectional area of plates, m^2
+// Part (c)
+// Since Q = C*V, solving for C
+C = Q/V; // Capacitance of the plates, F
+printf("\nThe electric field strength between the plates = %5.2f kV/m",E*1e-03);
+printf("\nThe csa of the field between the plates = %4.1f mm^2", A/1e-06);
+printf("\nThe capacitance of the plates = %3.1f micro-coulomb", C/1e-06);
+
+// Result
+// The electric field strength between the plates = 31.25 kV/m
+// The csa of the field between the plates = 13.3 mm^2
+// The capacitance of the plates = 1.6 micro-coulomb
diff --git a/1544/CH3/EX3.5/Ch03Ex5.sce b/1544/CH3/EX3.5/Ch03Ex5.sce
new file mode 100755
index 000000000..d7830dfaf
--- /dev/null
+++ b/1544/CH3/EX3.5/Ch03Ex5.sce
@@ -0,0 +1,19 @@
+// Scilab code Ex3.5: Pg 86 (2008)
+clc; clear;
+A = 6e-04; // Cross-sectional area of plates, m^2
+d = 5e-04; // Thickness of mica sheet, m
+Epsilon_r = 5.8; // Relative permittivity, unitless
+Epsilon_0 = 8.854e-12; // Permittivity of Free Space
+V = 200; // Potential difference, V
+// Part (a)
+// Since absolute permittivity, Epsilon = C*(d/A), therefore solving for d & putting Epsilon = Epsilon_0*Epsilon_r
+C = ( Epsilon_r*Epsilon_0*A )/d; // Capacitance, F
+// Part (b)
+// Since electric field strength(E) = potential gradient, therefore we have
+E = V/d; // Electric field strength, V/m
+printf("\nThe capacitance of the capacitor = %5.2f pF", C/1e-12);
+printf("\nElectric field strength = %3d kV/m",E*1e-03);
+
+// Result
+// The capacitance of the capacitor = 61.62 pF
+// Electric field strength = 400 kV/m
diff --git a/1544/CH3/EX3.6/Ch03Ex6.sce b/1544/CH3/EX3.6/Ch03Ex6.sce
new file mode 100755
index 000000000..85ab7ecf2
--- /dev/null
+++ b/1544/CH3/EX3.6/Ch03Ex6.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex3.6: Pg 86 (2008)
+clc; clear;
+C = 0.224e-09; //Capacitance, F
+A = 5625e-06; // Cross-sectional area of plates, m^2
+Epsilon_r = 2.5; // Relative permittivity
+Epsilon_0 = 8.854e-12; // Permittivity of Free Space
+// Since absolute permittivity, Epsilon = C*(d/A), therefore solving for d & putting Epsilon = Epsilon_0*Epsilon_r
+d = ( Epsilon_r*Epsilon_0*A )/C; // Thickness of waxed paper dielectric, m
+printf("\nThe thickness of paper required = %3.2f mm", d/1e-03);
+
+// Result
+// The thickness of paper required = 0.56 mm
diff --git a/1544/CH3/EX3.7/Ch03Ex7.sce b/1544/CH3/EX3.7/Ch03Ex7.sce
new file mode 100755
index 000000000..4786ae59a
--- /dev/null
+++ b/1544/CH3/EX3.7/Ch03Ex7.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex3.7: Pg 86 (2008)
+clc; clear;
+C = 4.7e-08; //Capacitance, F
+A = 4e-04; // Cross-sectional area of plates, m^2
+d = 1e-04; // Thickness of dielectric, m
+Epsilon_0 = 8.854e-12; // Permittivity of Free Space
+// Since absolute permittivity, Epsilon = C*(d/A), therefore solving for Epsilon_r & putting Epsilon = Epsilon_0*Epsilon_r
+Epsilon_r = (C*d)/(Epsilon_0*A); // Relative permittivity
+printf("\nRelative permittivity = %4d", Epsilon_r);
+
+// Result
+// Relative permittivity = 1327
diff --git a/1544/CH3/EX3.8/Ch03Ex8.sce b/1544/CH3/EX3.8/Ch03Ex8.sce
new file mode 100755
index 000000000..990ee1d08
--- /dev/null
+++ b/1544/CH3/EX3.8/Ch03Ex8.sce
@@ -0,0 +1,19 @@
+// Scilab code Ex3.8: Pg 87 (2008)
+clc; clear;
+V = 180; // Potential difference, V
+d = 3e-03; // Thickness of dielectric, m
+A = 4.2e-04; // Cross-sectional area of plates, m^2
+Epsilon_r = 3.5; // Relative permittivity
+Epsilon_0 = 8.854e-12; // Permittivity of Free Space
+// Since absolute permittivity, Epsilon = C*(d/A), therefore solving for C & putting Epsilon = Epsilon_0*Epsilon_r
+C = ( Epsilon_r*Epsilon_0*A )/d; // Capacitance, F
+// Since C = Q/V, solving for Q
+Q = C*V; // Electric charge, C
+// Using D = Q/A,
+ D = Q/A; // Electric field density, C/m^2
+ printf("\The flux thus produced = %3.2f nC.",Q/1e-09);
+ printf("\nThe flux density thus produced. = %3.2f micro-coulomb-per-metre-square", D/1e-06);
+
+// Result
+// The flux thus produced = 0.78 nC
+// The flux density thus produced. = 1.86 micro-C/m^2
diff --git a/1544/CH3/EX3.9/Ch03Ex9.sce b/1544/CH3/EX3.9/Ch03Ex9.sce
new file mode 100755
index 000000000..9a5f2c889
--- /dev/null
+++ b/1544/CH3/EX3.9/Ch03Ex9.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex3.9: Pg 89 (2008)
+clc; clear;
+C_1 = 4.7e-06; //Capacitance, F
+C_2 = 3.9e-06; //Capacitance, F
+C_3 = 2.2e-06; //Capacitance, F
+// The resulting capacitance of parallerly connected capacitors is the sum of the individual capacitance present in the circuit
+C = C_1 + C_2 + C_3; // Resulting capacitance of the circuit, F
+printf("\nThe resulting capacitance of the combination = %4.1f micro-farad", C/1e-06);
+
+// Result
+// The resulting capacitance of the combination = 10.8 micro-farad