summaryrefslogtreecommitdiff
path: root/1529/CH9
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1529/CH9
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1529/CH9')
-rwxr-xr-x1529/CH9/EX9.1/9_01.sce13
-rwxr-xr-x1529/CH9/EX9.10/9_10.sce8
-rwxr-xr-x1529/CH9/EX9.11/9_11.sce9
-rwxr-xr-x1529/CH9/EX9.12/9_12.sce6
-rwxr-xr-x1529/CH9/EX9.13/9_13.sce7
-rwxr-xr-x1529/CH9/EX9.14/9_14.sce16
-rwxr-xr-x1529/CH9/EX9.15/9_15.sce7
-rwxr-xr-x1529/CH9/EX9.16/9_16.sce10
-rwxr-xr-x1529/CH9/EX9.17/9_17.sce15
-rwxr-xr-x1529/CH9/EX9.18/9_18.sce6
-rwxr-xr-x1529/CH9/EX9.19/9_19.sce6
-rwxr-xr-x1529/CH9/EX9.2/9_02.sce9
-rwxr-xr-x1529/CH9/EX9.20/9_20.sce10
-rwxr-xr-x1529/CH9/EX9.21/9_21.sce13
-rwxr-xr-x1529/CH9/EX9.3/9_03.sce19
-rwxr-xr-x1529/CH9/EX9.4/9_04.sce7
-rwxr-xr-x1529/CH9/EX9.6/9_06.sce22
-rwxr-xr-x1529/CH9/EX9.7/9_07.sce7
-rwxr-xr-x1529/CH9/EX9.8/9_08.sce9
-rwxr-xr-x1529/CH9/EX9.9/9_09.sce7
20 files changed, 206 insertions, 0 deletions
diff --git a/1529/CH9/EX9.1/9_01.sce b/1529/CH9/EX9.1/9_01.sce
new file mode 100755
index 000000000..58f916fc9
--- /dev/null
+++ b/1529/CH9/EX9.1/9_01.sce
@@ -0,0 +1,13 @@
+//Chapter 9, Problem 1
+clc;
+B=1.25; //flux density
+v=4; //conductor velocity
+l=300*10^-3; //conductor length
+R=20; //resistance
+E=B*l*v; //calculating emf
+I=E/R; //calculating current from ohms law
+disp("(a)");
+disp("If the ends of the conductor are open circuited, no current will flow.");
+disp("(b)");
+disp("If its ends are connected to a load of 20ohm resistance, then");
+printf("Current = %f A",I);
diff --git a/1529/CH9/EX9.10/9_10.sce b/1529/CH9/EX9.10/9_10.sce
new file mode 100755
index 000000000..d20b6ecd9
--- /dev/null
+++ b/1529/CH9/EX9.10/9_10.sce
@@ -0,0 +1,8 @@
+//Chapter 9, Problem 10
+clc;
+E=1.5*10^3; //emf
+dI=4; //change in flux
+dt=8*10^-3; //change in time
+D=dI/dt;
+L=E/D;
+printf("Inductance L = %d H",L);
diff --git a/1529/CH9/EX9.11/9_11.sce b/1529/CH9/EX9.11/9_11.sce
new file mode 100755
index 000000000..d15c4bf8d
--- /dev/null
+++ b/1529/CH9/EX9.11/9_11.sce
@@ -0,0 +1,9 @@
+//Chapter 9, Problem 11
+clc;
+L=150*10^-3;
+E=40;
+//since the current is reversed, dI =6−(−6)=12A
+dI=12;
+//calculating change in time dt
+dt=(L*dI)/E;
+printf("Change in time dt = %f sec",dt);
diff --git a/1529/CH9/EX9.12/9_12.sce b/1529/CH9/EX9.12/9_12.sce
new file mode 100755
index 000000000..b2527488c
--- /dev/null
+++ b/1529/CH9/EX9.12/9_12.sce
@@ -0,0 +1,6 @@
+//Chapter 9, Problem 12
+clc;
+L=8; //inductance
+I=3; //current in coil
+W=(1/2)*L*I^2; //calculating energy stored in inductor
+printf("Energy stored = %d joules",W)
diff --git a/1529/CH9/EX9.13/9_13.sce b/1529/CH9/EX9.13/9_13.sce
new file mode 100755
index 000000000..5d3544a7d
--- /dev/null
+++ b/1529/CH9/EX9.13/9_13.sce
@@ -0,0 +1,7 @@
+//Chapter 9, Problem 13
+clc;
+N=800; //no of turns
+phi=5*10^-3; //flux
+I=4; //current in coil
+L=(N*phi)/I; //calculating inductance
+printf("Inductance of coil = %f H",L);
diff --git a/1529/CH9/EX9.14/9_14.sce b/1529/CH9/EX9.14/9_14.sce
new file mode 100755
index 000000000..2649fda47
--- /dev/null
+++ b/1529/CH9/EX9.14/9_14.sce
@@ -0,0 +1,16 @@
+//Chapter 9, Problem 14
+clc;
+N=1500; //no of turns
+phi=25*10^-3; //flux
+I=3; //current in coil
+dI=3-0; //change in current
+dt=150*10^-3; //change in time
+L=(N*phi)/I; //calculating inductance
+W=(1/2)*L*I^2; //calculating energy stored
+E=-L*(dI/dt); //calculating induced emf
+disp("(a)");
+printf("Inductance = %f H\n\n",L);
+disp("(b)");
+printf("Energy stored = %f J\n\n",W);
+disp("(c)");
+printf("Induced e.m.f = %d V",E);
diff --git a/1529/CH9/EX9.15/9_15.sce b/1529/CH9/EX9.15/9_15.sce
new file mode 100755
index 000000000..a560b2669
--- /dev/null
+++ b/1529/CH9/EX9.15/9_15.sce
@@ -0,0 +1,7 @@
+//Chapter 9, Problem 15
+clc;
+L=0.60; //inductance
+I=1.5; //current in coil
+phi=90*10^-6; //flux
+N=(L*I)/phi; //calculating no of turns
+printf("No of turns = %d turns",N);
diff --git a/1529/CH9/EX9.16/9_16.sce b/1529/CH9/EX9.16/9_16.sce
new file mode 100755
index 000000000..c8986abb6
--- /dev/null
+++ b/1529/CH9/EX9.16/9_16.sce
@@ -0,0 +1,10 @@
+//Chapter 9, Problem 16
+clc
+N=750 //no of turns
+L=3 //inductance in henry
+I=2 //current in ampere
+t=20e-3 //time in milisec
+phi=(L*I)/N
+E=-(N*phi)/t
+printf("Flux linking the coil = %d mWb\n\n",phi*1000)
+printf("Induced emf = %d V",E)
diff --git a/1529/CH9/EX9.17/9_17.sce b/1529/CH9/EX9.17/9_17.sce
new file mode 100755
index 000000000..d5e7281fd
--- /dev/null
+++ b/1529/CH9/EX9.17/9_17.sce
@@ -0,0 +1,15 @@
+//Chapter 9, Problem 17, Figure 9.10
+clc;
+N=800; //no of turns
+I=0.5; //current in coil
+l=%pi*120*10^-3; //length of coil
+u0=4*%pi*10^-7; //permeability of free space
+ur=3000; //relative permeability
+dI=0.5-0; //change in current
+dt=80*10^-3; //change in time
+A=400*10^-6; //cross sectional area
+S=l/(u0*ur*A); //calculating reluctance
+L=N^2/S; //calculating inductance
+E=-L*(dI/dt); //calculating induced emf
+printf("Self inductance L = %f H\n\n\n",L);
+printf("Induced emf E = %d V",E);
diff --git a/1529/CH9/EX9.18/9_18.sce b/1529/CH9/EX9.18/9_18.sce
new file mode 100755
index 000000000..6f9609140
--- /dev/null
+++ b/1529/CH9/EX9.18/9_18.sce
@@ -0,0 +1,6 @@
+//Chapter 9, Problem 18
+clc;
+D=200; //rate of change of current w.r.t time
+E=1.5; //induced emf
+M=E/D; //mutual inductance
+printf("Mutual inductance M = %f H",M);
diff --git a/1529/CH9/EX9.19/9_19.sce b/1529/CH9/EX9.19/9_19.sce
new file mode 100755
index 000000000..2245e510d
--- /dev/null
+++ b/1529/CH9/EX9.19/9_19.sce
@@ -0,0 +1,6 @@
+//Chapter 9, Problem 19
+clc;
+E=0.72; //induced emf
+M=0.018; //mutual inductance
+D=E/M; //calculating rate of change of current
+printf("Rate of change of current = %d A/s", D);
diff --git a/1529/CH9/EX9.2/9_02.sce b/1529/CH9/EX9.2/9_02.sce
new file mode 100755
index 000000000..b5d79ee0a
--- /dev/null
+++ b/1529/CH9/EX9.2/9_02.sce
@@ -0,0 +1,9 @@
+//Chapter 9, Problem 2
+clc;
+E=9; //emf
+B=0.6; //flux density
+l=75*10^-3; //length of conductor
+//since the conductor, the field and the direction of motion are mutually perpendicular
+//calculating velocity
+v=E/(B*l);
+printf("Velocity = %f m/s",v);
diff --git a/1529/CH9/EX9.20/9_20.sce b/1529/CH9/EX9.20/9_20.sce
new file mode 100755
index 000000000..3d3c9b02f
--- /dev/null
+++ b/1529/CH9/EX9.20/9_20.sce
@@ -0,0 +1,10 @@
+//Chapter 9, Problem 20
+clc;
+M=0.2;
+dI=10-4;
+dt=10*10^-3;
+N=500;
+E=-M*(dI/dt);
+dphi=(E*dt)/N;
+printf("Induced emf = %d V\n\n\n",E);
+printf("Change of flux = %f mWb",dphi*1000);
diff --git a/1529/CH9/EX9.21/9_21.sce b/1529/CH9/EX9.21/9_21.sce
new file mode 100755
index 000000000..9d0574776
--- /dev/null
+++ b/1529/CH9/EX9.21/9_21.sce
@@ -0,0 +1,13 @@
+//Chapter 9, Problem 21, Figure 9.11
+clc;
+dI=6-1;
+dt=200*10^-3;
+E=15;
+Np=1000;
+Ns=480;
+M=E/(dI/dt);
+S=(Np*Ns)/M;
+Lp=Np^2/S;
+printf("Mutual Inductance = %f H\n\n\n",M);
+printf("Reluctance = %d A/Wb\n\n\n",S);
+printf("Primary self-inductance Lp = %f H",Lp);
diff --git a/1529/CH9/EX9.3/9_03.sce b/1529/CH9/EX9.3/9_03.sce
new file mode 100755
index 000000000..00fa7cd0a
--- /dev/null
+++ b/1529/CH9/EX9.3/9_03.sce
@@ -0,0 +1,19 @@
+//Chapter 9, Problem 3
+clc;
+v=15; //velocity of conductor
+l=0.02; //length of conductor
+A=2*2*10^-4; //area of conductor
+phi=5*10^-6; //flux
+Q1=%pi/2; //converting 90 degree into radian
+Q2=%pi/3; //converting 60 degree into radian
+Q3=%pi/6; //converting 30 degree into radian
+B=phi/A; //calculating flux density
+E90=B*l*v*sin(Q1); //calculating emf
+E60=B*l*v*sin(Q2);
+E30=B*l*v*sin(Q3);
+disp("(a)");
+printf("E.M.F at 90◦ =%f V\n\n",E90*1000);
+disp("(b)");
+printf("E.M.F at 60◦ =%f V\n\n",E60*1000);
+disp("(c)");
+printf("E.M.F at 30◦ =%f V\n\n",E30*1000);
diff --git a/1529/CH9/EX9.4/9_04.sce b/1529/CH9/EX9.4/9_04.sce
new file mode 100755
index 000000000..31fed68d0
--- /dev/null
+++ b/1529/CH9/EX9.4/9_04.sce
@@ -0,0 +1,7 @@
+//Chapter 9, Problem 4
+clc;
+B=40*10^-6; //flux density
+l=36; //legnth of conductor
+v=(400*1000)/(60*60); //velocity of conductor
+E=B*l*v; //calculating emf
+printf("E.M.F = %f V",E);
diff --git a/1529/CH9/EX9.6/9_06.sce b/1529/CH9/EX9.6/9_06.sce
new file mode 100755
index 000000000..ed008023c
--- /dev/null
+++ b/1529/CH9/EX9.6/9_06.sce
@@ -0,0 +1,22 @@
+//Chapter 9, Problem 6
+clc;
+B=1.4; //flux density
+l=12*10^-2; //length
+N=80; //no of turns
+n=1200/60; //rotation in sec
+E1=90; //emf
+r=(8*10^-2)/2;
+Q90=%pi/2;
+//calculating velocity
+v=2*%pi*n*r;
+//calculating maximum emf
+E=2*N*B*v*l*sin(Q90);
+//calculating velocity with emf 90V
+v=E1/(2*N*B*l*sin(Q90));
+//calculating speed of coil
+w=v/r;
+w1=(w*60)/(2*%pi);
+disp("(a)");
+printf("Maximum emf induced = %f V",E);
+disp("(b)");
+printf("Speed of coil in rev/min = %d rev/min",w1);
diff --git a/1529/CH9/EX9.7/9_07.sce b/1529/CH9/EX9.7/9_07.sce
new file mode 100755
index 000000000..a1b093ce8
--- /dev/null
+++ b/1529/CH9/EX9.7/9_07.sce
@@ -0,0 +1,7 @@
+//Chapter 9, Problem 7
+clc;
+N=200; //no of turns
+dphi=25*10^-3; //change in flux
+dt=50*10^-3; //change in time
+E=-N*(dphi/dt); //calculating induced emf
+printf("Induced emf E = %d V",E);
diff --git a/1529/CH9/EX9.8/9_08.sce b/1529/CH9/EX9.8/9_08.sce
new file mode 100755
index 000000000..d541c7c3c
--- /dev/null
+++ b/1529/CH9/EX9.8/9_08.sce
@@ -0,0 +1,9 @@
+//Chapter 9, Problem 8
+clc;
+N=150;
+//Since the flux reverses, the flux changes from+400 μWb to −400 μWb,
+// a total change of flux of 800 μWb.
+dphi=800*10^-6; //change in flux
+dt=40*10^-3; //change in time
+E=-N*(dphi/dt); //calculating induced emf
+printf("Induced emf = %f V",E);
diff --git a/1529/CH9/EX9.9/9_09.sce b/1529/CH9/EX9.9/9_09.sce
new file mode 100755
index 000000000..79b72561d
--- /dev/null
+++ b/1529/CH9/EX9.9/9_09.sce
@@ -0,0 +1,7 @@
+//Chapter 9, Problem 9
+clc;
+L=12; //inductance
+dI=4; //change in current
+dt=1; //change in time
+E=-L*(dI/dt); //calculating induced emf
+printf("Induced emf E = %d V",E);