summaryrefslogtreecommitdiff
path: root/1529/CH7
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1529/CH7
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1529/CH7')
-rwxr-xr-x1529/CH7/EX7.1/7_01.sce6
-rwxr-xr-x1529/CH7/EX7.10/7_10.sce10
-rwxr-xr-x1529/CH7/EX7.11/7_11.sce13
-rwxr-xr-x1529/CH7/EX7.12/7_12.sce16
-rwxr-xr-x1529/CH7/EX7.13/7_13.sce20
-rwxr-xr-x1529/CH7/EX7.15/7_15.sce19
-rwxr-xr-x1529/CH7/EX7.2/7_02.sce7
-rwxr-xr-x1529/CH7/EX7.3/7_03.sce8
-rwxr-xr-x1529/CH7/EX7.4/7_04.sce7
-rwxr-xr-x1529/CH7/EX7.5/7_05.sce9
-rwxr-xr-x1529/CH7/EX7.6/7_06.sce16
-rwxr-xr-x1529/CH7/EX7.7/7_07.sce14
-rwxr-xr-x1529/CH7/EX7.8/7_08.sce10
13 files changed, 155 insertions, 0 deletions
diff --git a/1529/CH7/EX7.1/7_01.sce b/1529/CH7/EX7.1/7_01.sce
new file mode 100755
index 000000000..322e8e386
--- /dev/null
+++ b/1529/CH7/EX7.1/7_01.sce
@@ -0,0 +1,6 @@
+//Chapter 7, Problem 1
+clc;
+phi=150*10^-6; //Flux
+A=200*100*10^-6; //Cross sectional area
+B=phi/A; //Calculating flux density
+printf("Flux density = %f T",B);
diff --git a/1529/CH7/EX7.10/7_10.sce b/1529/CH7/EX7.10/7_10.sce
new file mode 100755
index 000000000..455872b1b
--- /dev/null
+++ b/1529/CH7/EX7.10/7_10.sce
@@ -0,0 +1,10 @@
+//Chapter 7, Problem 10
+clc;
+l=150*10^-3; //length
+u0=4*%pi*10^-7; //permeability of free space
+ur=4000; //relative permeability
+A=1800*10^-6; //cross-sectional area
+S=l/(u0*ur*A); //Calculating reluctance
+u=u0*ur; //Calculating absolute permeability
+printf("Reluctance = %f H^-1\n\n\n",S);
+printf("Absolute permeability = %f H/m",u*1000);
diff --git a/1529/CH7/EX7.11/7_11.sce b/1529/CH7/EX7.11/7_11.sce
new file mode 100755
index 000000000..1abda7589
--- /dev/null
+++ b/1529/CH7/EX7.11/7_11.sce
@@ -0,0 +1,13 @@
+//Chapter 7, Problem 11
+clc;
+r=50*10^-3; //radius
+A=400*10^-6; //cross-sectional area
+I=0.5; //current in the coil
+u0=4*%pi*10^-7; //permeability of free space
+phi=0.1*10^-3; //flux
+ur=200; //relative permeability
+l=2*%pi*r;
+S=l/(u0*ur*A); //Calculating reluctance
+N=(S*phi)/I; //Calculating no of turns
+printf("Reluctance = %f /H\n\n\n",S);
+printf("Number of turns = %d turns",N);
diff --git a/1529/CH7/EX7.12/7_12.sce b/1529/CH7/EX7.12/7_12.sce
new file mode 100755
index 000000000..12fca39ee
--- /dev/null
+++ b/1529/CH7/EX7.12/7_12.sce
@@ -0,0 +1,16 @@
+//Chapter 7, Problem 12
+clc;
+l1=6*10^-2; //length 1
+A1=1*10^-4; //area 1
+l2=2*10^-2; //length 2
+A2=0.5*10^-4; //area 2
+N=200; //no of turns
+I=0.4; //current in the coil
+u0=4*%pi*10^-7; //permeability of free space
+ur=750; //relative permeability
+S1=l1/(u0*ur*A1); //calculating reluctance for 6 cm long path
+S2=l2/(u0*ur*A2); //calculating reluctance for 2 cm long path
+S=S1+S2; //calculating total reluctance
+phi=(N*I)/S; //calculating flux
+B=phi/A2; //calculating flux density in 2cm path
+printf("Flux density in 2cm path = %f T",B);
diff --git a/1529/CH7/EX7.13/7_13.sce b/1529/CH7/EX7.13/7_13.sce
new file mode 100755
index 000000000..0f63f1eab
--- /dev/null
+++ b/1529/CH7/EX7.13/7_13.sce
@@ -0,0 +1,20 @@
+//Chapter 7, Problem 13
+clc;
+l1=40*10^-2;; //length of iron path
+l2=2*10^-3; //radial air gap
+u0=4*%pi*10^-7;
+phi=0.7*10^-3; //flux
+A=5*10^-4; //cross-sectional area
+H1=1650; //from B–H curve for silicon iron
+//Calculation for the silicon iron:
+B=phi/A;
+mmf1=H1*l1;
+//Calculation for the air gap:
+H2=B/u0;
+mmf2=H2*l2;
+mmf=mmf1+mmf2;
+disp("From the B–H curve for silicon iron on page 74, when B=1.4T, H =1650A/m.");
+printf("Hence m.m.f for the iron path = %d A\n\n\n",mmf1);
+disp("The flux density will be the same in the air gap as in the iron,");
+printf("Hence m.m.f for the air gap = %d A\n\n\n",mmf2);
+printf("Total m.m.f to produce a flux of 0.6mWb = %d A\n\n\n",mmf);
diff --git a/1529/CH7/EX7.15/7_15.sce b/1529/CH7/EX7.15/7_15.sce
new file mode 100755
index 000000000..8b8eab0a3
--- /dev/null
+++ b/1529/CH7/EX7.15/7_15.sce
@@ -0,0 +1,19 @@
+//Chapter 7, Problem 15, Figure 7.6
+clc;
+u0=4*%pi*10^-7;
+ur=1;
+B=0.80; //flux density
+H=750; //field intensity from B-H curve
+l1=25*10^-2; //length of cast steel core
+l2=1*10^-3; //air gap
+A=2*10^-4; //cross-sectional area
+N=5000; //no of turns
+//for cast steel core
+S1=(l1*H)/(B*A);
+//For the air gap:
+S2=l2/(u0*ur*A);
+//Total reluctance
+S=S1+S2;
+phi=B*A;
+I=(S*phi)/N;
+printf("Current in the coil to produce a flux density of 0.80T = %f A",I);
diff --git a/1529/CH7/EX7.2/7_02.sce b/1529/CH7/EX7.2/7_02.sce
new file mode 100755
index 000000000..cb4513916
--- /dev/null
+++ b/1529/CH7/EX7.2/7_02.sce
@@ -0,0 +1,7 @@
+//Chapter 1, Problem 2
+clc;
+phi=353*10^-3; //Flux
+B=1.8; //Flux density
+A=phi/B; //Area of pole face
+r=sqrt(A/%pi); //Radius
+printf("The radius of the pole face = %f mm",r*1000);
diff --git a/1529/CH7/EX7.3/7_03.sce b/1529/CH7/EX7.3/7_03.sce
new file mode 100755
index 000000000..f4385c1a2
--- /dev/null
+++ b/1529/CH7/EX7.3/7_03.sce
@@ -0,0 +1,8 @@
+//Chapter 7, Problem 3
+clc;
+H=8000; //Magnetic field strength
+d=30*10^-2; //Diameter of coil
+l=%pi*d; //Length
+N=750; //No of turns
+I=(H*l)/N; //Calculating current in the coil
+printf("Current in the coil = %f A",I);
diff --git a/1529/CH7/EX7.4/7_04.sce b/1529/CH7/EX7.4/7_04.sce
new file mode 100755
index 000000000..c175f8dc8
--- /dev/null
+++ b/1529/CH7/EX7.4/7_04.sce
@@ -0,0 +1,7 @@
+//Chapter 7, Problem 4
+clc;
+B=1.2; //Magnetic flux density
+H=1250; //Magnetic field strength
+uo=4*%pi*10^-7; //permeability of free space
+ur=B/(uo*H); //Calculating relative permeability
+printf("Relative permeability = %f",ur);
diff --git a/1529/CH7/EX7.5/7_05.sce b/1529/CH7/EX7.5/7_05.sce
new file mode 100755
index 000000000..69573f31c
--- /dev/null
+++ b/1529/CH7/EX7.5/7_05.sce
@@ -0,0 +1,9 @@
+//Chapter 7, Problem 5
+clc;
+B=0.25; //Magnetic flux density
+u0=4*%pi*10^-7; //permeability of free space
+l=12*10^-3; //Length
+H=B/u0; //Calculating magnetic field strength
+mmf=H*l; //Calculating magnetomotive force
+printf("Magnetic field strength = %d A/m\n\n\n",H);
+printf("m.m.f = %d A",mmf);
diff --git a/1529/CH7/EX7.6/7_06.sce b/1529/CH7/EX7.6/7_06.sce
new file mode 100755
index 000000000..f72033f8b
--- /dev/null
+++ b/1529/CH7/EX7.6/7_06.sce
@@ -0,0 +1,16 @@
+//Chapter 7, Problem 6
+clc;
+N=300; //No of turns
+I=5; //Current in the coil
+l=40*10^-2; //Length
+A=4*10^-4; //Area of cross-sectional
+H=(N*I)/l; //Calculating magnetic field strength
+u0=4*%pi*10^-7; //permeability of free space
+B=u0*H; //Flux density
+phi=B*A; //Fux
+disp("(a)");
+printf("Magnetic field strength = %d A/m\n\n\n",H);
+disp("(b)");
+printf("Flux density = %f mT\n\n\n",B*1000);
+disp("(c)");
+printf("Flux = %f μWb",phi*10^6);
diff --git a/1529/CH7/EX7.7/7_07.sce b/1529/CH7/EX7.7/7_07.sce
new file mode 100755
index 000000000..11fd42217
--- /dev/null
+++ b/1529/CH7/EX7.7/7_07.sce
@@ -0,0 +1,14 @@
+//Chapter 7, Problem 7
+clc;
+d=10*10^-2; //Diameter
+N=2000; //No of turns
+I=0.25; //Current in the coil
+B=0.4; //Magnetic flux density
+u0=4*%pi*10^-7; //permeability of free space
+l=%pi*d; //Calculating length of coil
+H=(N*I)/l; //Calculating magnetic field strength
+ur=B/(u0*H); //Calculating relative permeability
+disp("(a)");
+printf("Magnetic field strength = %f A/m\n\n\n",H);
+disp("(b)");
+printf("Relative permeability = %d",ur);
diff --git a/1529/CH7/EX7.8/7_08.sce b/1529/CH7/EX7.8/7_08.sce
new file mode 100755
index 000000000..8de198785
--- /dev/null
+++ b/1529/CH7/EX7.8/7_08.sce
@@ -0,0 +1,10 @@
+//Chapter 7, Problem 8
+clc;
+A=10*10^-4; //cross-sectional area
+l=0.2; //mean circumference in meter
+phi=0.3*10^-3; //flux
+B=phi/A; //flux density
+H=1000;
+mmf=H*l; //magnetomotive force
+disp("From the magnetisation curve for cast iron on page74,")
+printf("m.m.f = %f A",mmf);