diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1529/CH16 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1529/CH16')
-rwxr-xr-x | 1529/CH16/EX16.1/16_01.sce | 18 | ||||
-rwxr-xr-x | 1529/CH16/EX16.10/16_10.sce | 16 | ||||
-rwxr-xr-x | 1529/CH16/EX16.11/16_11.sce | 14 | ||||
-rwxr-xr-x | 1529/CH16/EX16.13/16_13.sce | 30 | ||||
-rwxr-xr-x | 1529/CH16/EX16.2/16_02.sce | 20 | ||||
-rwxr-xr-x | 1529/CH16/EX16.3/16_03.sce | 13 | ||||
-rwxr-xr-x | 1529/CH16/EX16.4/16_04.sce | 17 | ||||
-rwxr-xr-x | 1529/CH16/EX16.5/16_05.sce | 17 | ||||
-rwxr-xr-x | 1529/CH16/EX16.6/16_06.sce | 28 | ||||
-rwxr-xr-x | 1529/CH16/EX16.7/16_07.sce | 28 | ||||
-rwxr-xr-x | 1529/CH16/EX16.8/16_08.sce | 10 | ||||
-rwxr-xr-x | 1529/CH16/EX16.9/16_09.sce | 15 |
12 files changed, 226 insertions, 0 deletions
diff --git a/1529/CH16/EX16.1/16_01.sce b/1529/CH16/EX16.1/16_01.sce new file mode 100755 index 000000000..63ce13481 --- /dev/null +++ b/1529/CH16/EX16.1/16_01.sce @@ -0,0 +1,18 @@ +//Chapter 16, Problem 1
+clc;
+V=60; //voltage
+R=20; //resistance in ohm
+f=1000; //frequency in hertz
+L=2.387e-3; //inductance in henry
+Ir=V/R; //current flowing in the resistor
+Xl=2*%pi*f*L; //inductive reactance
+Il=V/Xl; //current flowing in the inductance
+I=sqrt(Ir^2+Il^2); //supply current from phasor diagram fig 16.1
+phi=atan(Il/Ir);
+Z=V/I; //impedance
+P=V*I*cos(phi); //power consumed
+printf("(a) Current flowing in the resistor = %d A\n\tCurrent flowing in the inductance = %d A\n\n",Ir,Il);
+printf("(b) Supply current = %d A\n\n",I);
+printf("(c) Circuit phase angle = %.2f deg (lagging)\n\n",phi*(180/%pi));
+printf("(d) Circuit impedance = %.1f ohm\n\n",Z);
+printf("(e) Power consumed = %d W",P);
diff --git a/1529/CH16/EX16.10/16_10.sce b/1529/CH16/EX16.10/16_10.sce new file mode 100755 index 000000000..1954003cb --- /dev/null +++ b/1529/CH16/EX16.10/16_10.sce @@ -0,0 +1,16 @@ +//Chapter 16, Problem 10
+clc;
+L=100e-3; //inductance in henry
+R=800; //resistance in ohm
+f=5000; //frequency
+V=12; //voltage
+w=2*%pi*f;
+C=(L*(w^2+(R^2/L^2)))^-1; //capacitance in farad
+Xl=2*%pi*f*L; //inductive reactance
+Rd=L/(R*C); //dynamic resistance
+Ir=V/Rd; //current at resonance
+Q=Xl/R; //circuit Q-factor at resonance
+printf("(a) capacitance of the capacitor, = %f uF\n\n",C*10^6);
+printf("(b) Dynamic resistance Rd = %.2f k.ohm\n\n",Rd/1000);
+printf("(c) supply current Ir = %.3f mA\n\n",Ir*1000);
+printf("(d) Q factor of circuit = %.2f",Q);
diff --git a/1529/CH16/EX16.11/16_11.sce b/1529/CH16/EX16.11/16_11.sce new file mode 100755 index 000000000..94f677feb --- /dev/null +++ b/1529/CH16/EX16.11/16_11.sce @@ -0,0 +1,14 @@ +//Chapter 16, Problem 11, Fig 16.13(a)
+clc;
+f = 50; // in ohm
+V = 240; // in Volts
+pf = 0.6 // power factor
+Im = 50; // in amperes
+
+//calculation:
+phi = acos(pf)
+phid = phi*180/%pi
+Ic = Im*sin(phi)
+I = Im*cos(phi)
+printf("\n\n (a)The capacitor current Ic must be %.0f A for the power factor to be unity. ",Ic)
+printf("\n\n (b)Supply current I = %.0f A ",I)
diff --git a/1529/CH16/EX16.13/16_13.sce b/1529/CH16/EX16.13/16_13.sce new file mode 100755 index 000000000..4989a2d9f --- /dev/null +++ b/1529/CH16/EX16.13/16_13.sce @@ -0,0 +1,30 @@ +//Chapter 16, Problem 13
+clc;
+eff = 0.8; // effficiency
+f = 50; // in ohm
+Pout = 4800; // in Watt
+pf1 = 0.625 // power factor
+pf2 = 0.95 // power factor
+V = 240; // in Volts
+//calculation:
+Pin = Pout/eff
+Im = Pin/(V*pf1)
+phi1 = acos(pf1)
+phi1d = phi1*180/%pi
+//When a capacitor C is connected in parallel with the motor a current Ic flows which leads V by 90°.
+phi2 = acos(pf2)
+phi2d = phi2*180/%pi
+Imh = Im*cos(phi1)
+//Ih = I*cos(phi2)
+Ih = Imh
+I = Ih/cos(phi2)
+Imv = Im*sin(phi1)
+Iv = I*sin(phi2)
+Ic = Imv - Iv
+C = Ic/(2*%pi*f*V)
+kvar = V*Ic/1000
+printf("\n\n (a)Current taken by the motor, Im = %.0f A",Im)
+printf("\n\n (b)Supply current after p.f. correction, I = %.2f A ",I)
+printf("\n\n (c)Magnitude of the capacitor current Ic = %.0f A",Ic)
+printf("\n\n (d)Capacitance, C = %.0f μF ",(C/1E-6))
+printf("\n\n (d)kvar rating of the capacitor = %.2f kvar ",kvar)
diff --git a/1529/CH16/EX16.2/16_02.sce b/1529/CH16/EX16.2/16_02.sce new file mode 100755 index 000000000..eed1784f2 --- /dev/null +++ b/1529/CH16/EX16.2/16_02.sce @@ -0,0 +1,20 @@ +//Chapter 16, Problem 2
+clc;
+V=240; //voltage
+R=80; //resistance in ohm
+f=50; //frequency in hertz
+C=30e-6; //capacitance in farad
+Ir=V/R; //current flowing in the resistor
+Xc=1/(2*%pi*f*C); //capacitive reactance
+Ic=V/Xc; //current flowing in the capacitor
+I=sqrt(Ir^2+Ic^2); //supply current
+phi=atan(Ic/Ir);
+Z=V/I; //impedance
+P=V*I*cos(phi); //power consumed
+S=V*I; //apparent power,
+printf("(a) Current flowing in the resistor = %d A\n\tCurrent flowing in the capacitor = %.3f A\n\n",Ir,Ic);
+printf("(b) Supply current = %.3f A\n\n",I);
+printf("(c) Circuit phase angle = %.2f deg (leading)\n\n",phi*(180/%pi));
+printf("(d) Circuit impedance = %.2f ohm\n\n",Z);
+printf("(e) Power consumed = %d W\n\n",P);
+printf("(f) Apparent power = %.1f VA",S);
diff --git a/1529/CH16/EX16.3/16_03.sce b/1529/CH16/EX16.3/16_03.sce new file mode 100755 index 000000000..405611f0c --- /dev/null +++ b/1529/CH16/EX16.3/16_03.sce @@ -0,0 +1,13 @@ +//Chapter 16, Problem 3, Fig. 16.3
+clc;
+V=120; //voltage
+f=200; //frequency in hertz
+I=2; //supply current
+pf=0.6; //power factor
+phi=acos(pf);
+Ir=I*pf; //current flowing in the resistor
+Ic=I*sin(phi); //current flowing in the capacitor
+R=V/Ir; //resistance in ohm
+C=Ic/(2*%pi*f*V); //capacitance in faradd
+printf("Capacitance of capacitor = %f uF\n\n",C*10^6);
+printf("Resistance of resistor = %f ohm\n\n",R);
diff --git a/1529/CH16/EX16.4/16_04.sce b/1529/CH16/EX16.4/16_04.sce new file mode 100755 index 000000000..81f119ad9 --- /dev/null +++ b/1529/CH16/EX16.4/16_04.sce @@ -0,0 +1,17 @@ +//Chapter 16, Problem 4
+clc;
+L=120e-3; //inductance in henry
+C=25e-6; //capacitance in farad
+V=100; //voltage
+f=50; //frequency in hertz
+Xl=2*%pi*f*L; //inductive reactance
+Xc=1/(2*%pi*f*C); //capacitive reactance
+Il=V/Xl; //current flowing in the inductance
+Ic=V/Xc; //current flowing in the capacitor
+I=Il-Ic;
+Z=V/I;
+P=V*I*cos(90*%pi/180);
+printf("(a) Branch current,\n Il = %.3f A\nIc = %.3f A\n\n",Il,Ic);
+printf("(b) Supply current = %.3f A\nCurrent lags the supply voltage V by 90deg from Fig 16.4(i)",I);
+printf("(c) Circuit impedance Z = %.3f ohm\n\n",Z);
+printf("(d) Power consumed P = %d W",P);
diff --git a/1529/CH16/EX16.5/16_05.sce b/1529/CH16/EX16.5/16_05.sce new file mode 100755 index 000000000..0a43df987 --- /dev/null +++ b/1529/CH16/EX16.5/16_05.sce @@ -0,0 +1,17 @@ +//Chapter 16, Problem 5
+clc;
+L=120e-3; //inductance in henry
+C=25e-6; //capacitance in farad
+V=100; //voltage
+f=150; //frequency in hertz
+Xl=2*%pi*f*L; //inductive reactance
+Xc=1/(2*%pi*f*C); //capacitive reactance
+Il=V/Xl; //current flowing in the inductor
+Ic=V/Xc; //current flowing in the capacitor
+I=Ic-Il;
+Z=V/I;
+P=V*I*cos(90*%pi/180);
+printf("(a) Branch current,\n Il = %.3f A\nIc = %.3f A\n\n",Il,Ic);
+printf("(b) Supply current = %.3f A\nCurrent lags the supply voltage V by 90deg from Fig 16.4(i)",I);
+printf("(c) Circuit impedance Z = %.3f ohm\n\n",Z);
+printf("(d) Power consumed P = %d W",P);
diff --git a/1529/CH16/EX16.6/16_06.sce b/1529/CH16/EX16.6/16_06.sce new file mode 100755 index 000000000..4c74f0bc5 --- /dev/null +++ b/1529/CH16/EX16.6/16_06.sce @@ -0,0 +1,28 @@ +//Chapter 16, Problem 6, Fig.16.6
+clc;
+L=159.2e-3; //inductance in henry
+R=40; //resistance in ohm
+C=30e-6; //capacitance in farad
+V=240; //voltage
+f=50; //frequency
+Xl=2*%pi*f*L; //inductive reactance
+Z1=sqrt(R^2+Xl^2);
+Ilr=V/Z1;
+phi1=atan(Xl/R);
+Xc=1/(2*%pi*f*C); //capacitive reactance
+Ic=V/Xc;
+Ih=Ilr*cos(51.34*%pi/180);
+a=-Ilr*sin(51.34*%pi/180);
+b=Ic*sin(90*%pi/180);
+Iv=a+b;
+I=sqrt(Ih^2+(Iv)^2);
+phi2=atan(-Iv/Ih);
+Z=V/I; //impedance
+P=V*I*cos(phi2);
+S=V*I; //apparent power
+Q=V*I*sin(phi2); //reactive power
+printf("(a) Current in coil = %f A\n Phase angle = %f deg (lagging)\n\n",Ilr,phi1*180/%pi);
+printf("(b) Current in capacitor, Ic = %f A\n A leading the supply voltage by 90deg\n\n",Ic);
+printf("(c) Supply current I = %f A\n phase angle = %f deg (lagging)\n\n",I,phi2*180/%pi);
+printf("(d) Circuit impedance Z = %f ohm\n\n",Z);
+printf("(e) Power consumed P = %f W\n\n",P);
diff --git a/1529/CH16/EX16.7/16_07.sce b/1529/CH16/EX16.7/16_07.sce new file mode 100755 index 000000000..183e3de3b --- /dev/null +++ b/1529/CH16/EX16.7/16_07.sce @@ -0,0 +1,28 @@ +//Chapter 16, Problem 7, Fig.16.8
+clc;
+L=0.12; //inductance in henry
+R=3000; //resistance in ohm
+C=0.02e-6; //capacitance in farad
+V=40; //voltage
+f=5000; //frequency
+Xl=2*%pi*f*L; //inductive reactance
+Z1=sqrt(R^2+Xl^2);
+Ilr=V/Z1;
+phi1=atan(Xl/R);
+Xc=1/(2*%pi*f*C); //capacitive reactance
+Ic=V/Xc;
+Ih=Ilr*cos(51.34*%pi/180);
+a=-Ilr*sin(51.34*%pi/180);
+b=Ic*sin(90*%pi/180);
+Iv=a+b;
+I=sqrt(Ih^2+(Iv)^2);
+phi2=atan(-Iv/Ih);
+Z=V/I; //impedance
+P=V*I*cos(phi2);
+S=V*I; //apparent power
+Q=V*I*sin(phi2); //reactive power
+printf("(a) Current in coil = %.3f mA\n Phase angle = %.3f deg (lagging)\n\n",Ilr*1000,phi1*180/%pi);
+printf("(b) Current in capacitor, Ic = %.3f mA\n A leading the supply voltage by 90deg\n\n",Ic*1000);
+printf("(c) Supply current I = %.3f mA\n phase angle = %.3f deg \n\n",I*1000,-phi2*180/%pi);
+printf("(d) Circuit impedance Z = %.3f Kohm\n\n",Z/1000);
+printf("(e) Power consumed P = %.3f mW\n\n",P*1000);
diff --git a/1529/CH16/EX16.8/16_08.sce b/1529/CH16/EX16.8/16_08.sce new file mode 100755 index 000000000..eaa0ffa95 --- /dev/null +++ b/1529/CH16/EX16.8/16_08.sce @@ -0,0 +1,10 @@ +//Chapter 16, Problem 8
+clc;
+L=150e-3; //inductance in henry
+C=40e-6; //capacitance in farad
+V=50; //voltage
+fr=(2*%pi)^-1*sqrt(1/(L*C)); //resonant frequency
+Xc=1/(2*%pi*fr*C); //capacitive reactance
+Icir=V/Xc; //current circulating in L and C at resonance
+printf("(a) Resonant frequency of the circuit = %.3f Hz\n\n",fr);
+printf("(b) Current circulating in the capacitor and inductance at resonance = %.3f A",Icir);
diff --git a/1529/CH16/EX16.9/16_09.sce b/1529/CH16/EX16.9/16_09.sce new file mode 100755 index 000000000..30596bcf0 --- /dev/null +++ b/1529/CH16/EX16.9/16_09.sce @@ -0,0 +1,15 @@ +//Chapter 16, Problem 9
+clc;
+L=0.20; //inductance in henry
+R=60; //resistance in ohm
+C=20e-6; //capacitance in farad
+V=20; //voltage
+fr=(2*%pi)^-1*sqrt((1/(L*C))-(R^2/L^2));
+Xl=2*%pi*fr*L; //inductive reactance
+Rd=L/(R*C); //dynamic resistance
+Ir=V/Rd; //current at resonance
+Q=Xl/R; //circuit Q-factor at resonance
+printf("(a) Resonant frequency of the circuit = %.2f Hz\n\n",fr);
+printf("(b) Dynamic resistance Rd = %.2f ohm\n\n",Rd);
+printf("(c) Current at resonance Ir = %.2f A\n\n",Ir);
+printf("(d) Q factor of circuit = %.2f",Q);
|