diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1523/CH12 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1523/CH12')
-rwxr-xr-x | 1523/CH12/EX12.10/ex12_10.sce | 19 | ||||
-rwxr-xr-x | 1523/CH12/EX12.2/ex12_2.sce | 17 | ||||
-rwxr-xr-x | 1523/CH12/EX12.3/ex12_3.sce | 15 | ||||
-rwxr-xr-x | 1523/CH12/EX12.4/ex12_4.sce | 17 | ||||
-rwxr-xr-x | 1523/CH12/EX12.5/ex12_5.sce | 17 | ||||
-rwxr-xr-x | 1523/CH12/EX12.6/ex12_6.sce | 17 | ||||
-rwxr-xr-x | 1523/CH12/EX12.7/ex12_7.sce | 17 | ||||
-rwxr-xr-x | 1523/CH12/EX12.8/ex12_8.sce | 17 | ||||
-rwxr-xr-x | 1523/CH12/EX12.9/ex12_9.sce | 19 |
9 files changed, 155 insertions, 0 deletions
diff --git a/1523/CH12/EX12.10/ex12_10.sce b/1523/CH12/EX12.10/ex12_10.sce new file mode 100755 index 000000000..595fec234 --- /dev/null +++ b/1523/CH12/EX12.10/ex12_10.sce @@ -0,0 +1,19 @@ +// Network Synthesis : example 12.10 : (pg 12.6 & 12.7)
+s=poly(0,'s');
+p1=((s^5)+((s^3))+(s));
+p2=((5*(s^4))+3*(s^2)+1);
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+[r4,q4]=pdiv(r2,r3);
+printf("\n P(s) = ((s^5)+((s^3))+(s))");
+printf("\n d/ds.P(s)= ((5*(s^4))+3*(s^2)+1)");
+printf("\nQ(s)=P(s)/d/ds.P(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+disp(q4);
+printf("\nSince two quotient terms are negative, P(s) is not hurwitz");
diff --git a/1523/CH12/EX12.2/ex12_2.sce b/1523/CH12/EX12.2/ex12_2.sce new file mode 100755 index 000000000..16cc3fad6 --- /dev/null +++ b/1523/CH12/EX12.2/ex12_2.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.2 : (pg 12.2)
+s=poly(0,'s');
+p1=((s^4)+(5*(s)^2)+4);
+p2=((s^3)+(3*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = (s^4)+(5s^3)+4");
+printf("\nOdd part of P(s) = (s^3)+(3s)");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH12/EX12.3/ex12_3.sce b/1523/CH12/EX12.3/ex12_3.sce new file mode 100755 index 000000000..9f5d4fda0 --- /dev/null +++ b/1523/CH12/EX12.3/ex12_3.sce @@ -0,0 +1,15 @@ +// Network Synthesis : example 12.3 : (pg 12.2 & 12.3)
+s=poly(0,'s');
+p1=((s^3)+(5*(s)));
+p2=((4*s^2)+(2));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+printf("\nEven part of P(s) = ((4*s^2)+(2))");
+printf("\nOdd part of P(s) = ((s^3)+(5*(s)))");
+printf("\nQ(s)= n(s)/m(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH12/EX12.4/ex12_4.sce b/1523/CH12/EX12.4/ex12_4.sce new file mode 100755 index 000000000..2730922ec --- /dev/null +++ b/1523/CH12/EX12.4/ex12_4.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.4 : (pg 12.3)
+s=poly(0,'s');
+p1=((s^4)+(3*(s)^2)+12);
+p2=((s^3)+(2*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((s^4)+(3*(s)^2)+12)");
+printf("\nOdd part of P(s) = ((s^3)+(2*s))");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince two quotient terms are negative, P(s) is not hurwitz");
diff --git a/1523/CH12/EX12.5/ex12_5.sce b/1523/CH12/EX12.5/ex12_5.sce new file mode 100755 index 000000000..77432af6e --- /dev/null +++ b/1523/CH12/EX12.5/ex12_5.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.5 : (pg 12.3 & 12.4)
+s=poly(0,'s');
+p1=((s^4)+(2*(s)^2)+2);
+p2=((s^3)+(3*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((s^4)+(2*(s)^2)+2)");
+printf("\nOdd part of P(s) = (s^3)+(3s)");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince two terms are negative, P(s) is not hurwitz");
\ No newline at end of file diff --git a/1523/CH12/EX12.6/ex12_6.sce b/1523/CH12/EX12.6/ex12_6.sce new file mode 100755 index 000000000..4622b6986 --- /dev/null +++ b/1523/CH12/EX12.6/ex12_6.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.6 : (pg 12.4)
+s=poly(0,'s');
+p1=((2*(s^4))+(6*(s)^2)+1);
+p2=((5*(s^3))+(3*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((2*s^4)+(6*(s)^2)+1)");
+printf("\nOdd part of P(s) = ((5*s^3)+(3*s))");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH12/EX12.7/ex12_7.sce b/1523/CH12/EX12.7/ex12_7.sce new file mode 100755 index 000000000..26c6d50d2 --- /dev/null +++ b/1523/CH12/EX12.7/ex12_7.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.7 : (pg 12.4 & 12.5)
+s=poly(0,'s');
+p1=((s^4)+(6*(s)^2)+8);
+p2=(7*(s^3)+(21*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((s^4)+(6*(s)^2)+8)");
+printf("\nOdd part of P(s) = (7*(s^3)+(21*s))");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH12/EX12.8/ex12_8.sce b/1523/CH12/EX12.8/ex12_8.sce new file mode 100755 index 000000000..c7b06d159 --- /dev/null +++ b/1523/CH12/EX12.8/ex12_8.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.8 : (pg 12.5)
+s=poly(0,'s');
+p1=((s^4)+(5*(s)^2)+10);
+p2=(5*(s^3)+(4*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((s^4)+(5*(s)^2)+10)");
+printf("\nOdd part of P(s) = (5*(s^3)+(4*s))");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince two terms are negative, P(s) is not hurwitz");
diff --git a/1523/CH12/EX12.9/ex12_9.sce b/1523/CH12/EX12.9/ex12_9.sce new file mode 100755 index 000000000..f1daea1f8 --- /dev/null +++ b/1523/CH12/EX12.9/ex12_9.sce @@ -0,0 +1,19 @@ +// Network Synthesis : example 12.9 : (pg 12.6)
+s=poly(0,'s');
+p1=((s^5)+(3*(s^3))+(2*s));
+p2=((5*(s^4))+9*(s^2)+2);
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+[r4,q4]=pdiv(r2,r3);
+printf("\n P(s) = ((s^5)+(3*(s^3))+(2*s))");
+printf("\n d/ds.P(s)= ((5*(s^4))+9*(s^2)+2)");
+printf("\nQ(s)=P(s)/d/ds.P(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+disp(q4);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
|