diff options
author | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
commit | f35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch) | |
tree | eb72842d800ac1233e9d890e020eac5fd41b0b1b /1445/CH2/EX2.6/Ex2_6.sce | |
parent | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff) | |
download | Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2 Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip |
updated the code
Diffstat (limited to '1445/CH2/EX2.6/Ex2_6.sce')
-rw-r--r-- | 1445/CH2/EX2.6/Ex2_6.sce | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/1445/CH2/EX2.6/Ex2_6.sce b/1445/CH2/EX2.6/Ex2_6.sce index 378b29151..61aedd2de 100644 --- a/1445/CH2/EX2.6/Ex2_6.sce +++ b/1445/CH2/EX2.6/Ex2_6.sce @@ -1,6 +1,7 @@ //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT //Example 6 +clc; disp("CHAPTER 2"); disp("EXAMPLE 6"); @@ -12,18 +13,17 @@ v=230; //in Volts pf2=0.9; //power factor(lagging) //SOLUTION -//V.I1.cos(Φ1) = P phi1=acos(pf1); res1=tan(phi1); //result1 = tan(Φ1) phi2=acos(pf2); res2=tan(phi2); //result2 = tan(Φ2) Ic=I1*pf1*(res1-res2); -w=2*%pi*f; //w=2.pi.f +w=2*%pi*f; c=Ic/(v*w); -disp(sprintf("The value of capacitance is %5.2f μF",c*(10^6)));//text book answer is 82.53 mF -Qc=v*Ic; // reactive power in kVAr -disp(sprintf("The reactive power is %6.4f kVAR",Qc/(10^3)));//text book answer is 1.3716 -I2=I1*(pf1/pf2); //I1.cos(Φ1) = I2.cos(Φ2) -disp(sprintf("The new supply current is %5.2f A",I2)); +disp(sprintf("The value of capacitance is %f μF",c*(10^6))); +Qc=v*Ic; +disp(sprintf("The reactive power is %f kVAR",Qc/(10^3))); +I2=I1*(pf1/pf2); +disp(sprintf("The new supply current is %f A",I2)); //END |