diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1445/CH2/EX2.28 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1445/CH2/EX2.28')
-rw-r--r-- | 1445/CH2/EX2.28/Ex2_28.sce | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/1445/CH2/EX2.28/Ex2_28.sce b/1445/CH2/EX2.28/Ex2_28.sce new file mode 100644 index 000000000..ce41fd503 --- /dev/null +++ b/1445/CH2/EX2.28/Ex2_28.sce @@ -0,0 +1,66 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 28 // read it as example 27 in the book on page 2.80 + +disp("CHAPTER 2"); +disp("EXAMPLE 28"); +// +//Circuit diagram given with 3 branches +//VARIABLE INITIALIZATION +z1=2+(%i*3); //impedance in rectangular form in Ohms +z2=1-(%i*5); //impedance in rectangular form in Ohms +z3=4+(%i*2); //impedance in rectangular form in Ohms +v=10; //in volts +//SOLUTION + +//solution (a) +//Total impedance +//Total circuit impedance Z=(Z1||Z2)+Z3 +z=z1+(z2*z3)/(z2+z3); +//define function +function [mag,angle]=rect2pol(x,y); +mag=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[magZ, angleZ]=rect2pol(real(z),imag(z)); +disp("SOLUTION (i)"); +disp(sprintf("Total circuit impedance is %3.2f+%3.1fj S", real(z), imag(z)));// in rectangula rform +disp(sprintf("Total circuit impedance is %3.2f %3.1f S", magZ, angleZ)); //in polar form + +//solution (b) +//Total supply current I=V/Z +i=v/z; +[mag, angle]=rect2pol(real(i), imag(i)); +disp("SOLUTION (b)"); +disp(sprintf("Total current is %3.2f <%3.1f Amp",mag,angle)); +//solution (c) +//Vbc=I.Zbc where Zbc=(z2*z3)/(z2+z3) +Vbc=i*((z2*z3)/(z2+z3)); +[mag1, angle1]=rect2pol(real(Vbc), imag(Vbc)); +disp("SOLUTION (c)"); +disp(sprintf("The voltage across the || circuit is %3.2f-%3.2fj",real(Vbc), imag(Vbc))); +disp(sprintf("The voltage across the || circuit is %3.2f <%3.1f",mag1, angle1)); +disp(sprintf("The voltage Vbc lags circuit by %3.2f Deg",angle-angle1)); +//solution (d) +//i2=Vbc/z2, i3=Vbc/z3 +i2=Vbc/z2; +i3=Vbc/z3; +[mag2, angle2]=rect2pol(real(i2), imag(i2)); +[mag3, angle3]=rect2pol(real(i3), imag(i3)); +disp("SOLUTION (d)"); +disp(sprintf("The current across fist branch of || circuit is %3.2f <%3.1f",mag2, angle2)); +disp(sprintf("The current across second branch of || circuit is %3.2f <%3.1f",mag3, angle3)); +//solution (e) +pf=cos(-1*angle*%pi/180); +disp("SOLUTION (e)"); +disp(sprintf("The power factor is %.3f",pf)); +//solution (iv) +//Apparent power s=VI, True Power, tp I^2R, Reactive Power, rp=I^2X or VISSin(angle) +s=v*mag; //apparent power +tp=(mag^2)*magZ;//true power +rp=v*mag*sin(-1*angle*%pi/180);//reactive power +disp("SOLUTION (f)"); +disp(sprintf("The Apparent power is %.2f VA",s)); +disp(sprintf("The True power is %.2f W",tp));//text book answer is 16.32 may be due to truncation +disp(sprintf("The Reactive power is %.1f vars",rp)); +disp(" "); +//END |