summaryrefslogtreecommitdiff
path: root/1445/CH2/EX2.17/ch2_ex_17.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1445/CH2/EX2.17/ch2_ex_17.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1445/CH2/EX2.17/ch2_ex_17.sce')
-rw-r--r--1445/CH2/EX2.17/ch2_ex_17.sce51
1 files changed, 51 insertions, 0 deletions
diff --git a/1445/CH2/EX2.17/ch2_ex_17.sce b/1445/CH2/EX2.17/ch2_ex_17.sce
new file mode 100644
index 000000000..ba82080a2
--- /dev/null
+++ b/1445/CH2/EX2.17/ch2_ex_17.sce
@@ -0,0 +1,51 @@
+//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
+//Example 17
+
+disp("CHAPTER 2");
+disp("EXAMPLE 17");
+
+//VARIABLE INITIALIZATION
+e=141.4; //in Volts
+E=141.4/sqrt(2); //in Volts
+angle_E=0; //in degrees
+//i(t)=(14.14<0)+(7.07<120)
+i1=14.14; //in Amperes
+angle_i1=0; //in degrees
+i2=7.07; //in Amperes
+angle_i2=120; //in degrees
+
+//SOLUTION
+//function to convert from polar form to rectangular form
+function [x,y]=pol2rect(mag,angle);
+x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians
+y=mag*sin(angle*(%pi/180));
+endfunction;
+[i1_x,i1_y]=pol2rect(i1,angle_i1);
+[i2_x,i2_y]=pol2rect(i2,angle_i2);
+i=(i1_x+i2_x)+(%i*(i1_y+i2_y));
+//function to convert from rectangular form to polar form
+function [mag,angle]=rect2pol(x,y);
+mag=sqrt((x^2)+(y^2));
+angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
+endfunction;
+[I,angle_I]=rect2pol((i1_x+i2_x),(i1_y+i2_y));
+I=I/sqrt(2);
+
+//solution (i)
+z=E/I;
+angle_z=angle_E-angle_I;
+[r,xc]=pol2rect(z,angle_z);
+f=50;
+c=1/(2*%pi*f*(-xc));
+disp(sprintf("(i) The value of resistance is %f Ω",r));
+disp(sprintf(" The value of capacitance is %f μF",c*10^6));
+
+//solution (ii)
+pf=cos(angle_z*(%pi/180));
+disp(sprintf("(ii) The power factor is %f ",pf));
+
+//solution (iii)
+p=E*I*pf;
+disp(sprintf("(iii) The power absorbed by the source is %f W",p));
+
+//END