diff options
author | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
commit | f35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch) | |
tree | eb72842d800ac1233e9d890e020eac5fd41b0b1b /1445/CH2/EX2.17/Ex2_17.sce | |
parent | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff) | |
download | Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2 Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip |
updated the code
Diffstat (limited to '1445/CH2/EX2.17/Ex2_17.sce')
-rw-r--r-- | 1445/CH2/EX2.17/Ex2_17.sce | 31 |
1 files changed, 13 insertions, 18 deletions
diff --git a/1445/CH2/EX2.17/Ex2_17.sce b/1445/CH2/EX2.17/Ex2_17.sce index 9b4c7c29e..614c7b42a 100644 --- a/1445/CH2/EX2.17/Ex2_17.sce +++ b/1445/CH2/EX2.17/Ex2_17.sce @@ -1,18 +1,13 @@ //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT //Example 17 +clc; disp("CHAPTER 2"); disp("EXAMPLE 17"); - -//Given -//AC Voltage e(t)=141.4.sin (120.t) -//Current in the circuit is -//i(t)=14.14.sin (120.t+7.07.cos (120.t+30) - //VARIABLE INITIALIZATION -e=141.4; //in Volts -E=141.4/sqrt(2); //in Volts +e=141.4; //amplitude of e(t) in Volts +E=141.4/sqrt(2); //RMS value of e(t) in Volts angle_E=0; //in degrees //i(t)=(14.14<0)+(7.07<120) i1=14.14; //in Amperes @@ -21,16 +16,16 @@ i2=7.07; //in Amperes angle_i2=120; //in degrees //SOLUTION -//function to convert from polar form to rectangular form -function [x,y]=pol2rect(mag,angle); +function [x,y]=pol2rect(mag,angle); //function 'pol2rect()' converts current in polar form to rectangular form x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians y=mag*sin(angle*(%pi/180)); endfunction; -[i1_x,i1_y]=pol2rect(i1,angle_i1); -[i2_x,i2_y]=pol2rect(i2,angle_i2); +//the given current i(t) is composed of two currents i1(t) and i2(t) +//i1(t) and i2(t) are not mentioned in the book but are considered for the sake of convenience +[i1_x,i1_y]=pol2rect(i1,angle_i1); //i1(t)= 14.14 sin(120t) +[i2_x,i2_y]=pol2rect(i2,angle_i2); //i2(t)=7.07 cos(120t+30) i=(i1_x+i2_x)+(%i*(i1_y+i2_y)); -//function to convert from rectangular form to polar form -function [mag,angle]=rect2pol(x,y); +function [mag,angle]=rect2pol(x,y); //function 'rect2pol()' converts current in rectangular form to polar form mag=sqrt((x^2)+(y^2)); angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees endfunction; @@ -43,15 +38,15 @@ angle_z=angle_E-angle_I; [r,xc]=pol2rect(z,angle_z); f=50; c=1/(2*%pi*f*(-xc)); -disp(sprintf("(i) The value of resistance is %5.3f Ω",r)); -disp(sprintf(" The value of capacitance is %6.4f μF",c*10^6)); +disp(sprintf("(i) The value of resistance is %f Ω",r)); +disp(sprintf(" The value of capacitance is %f μF",c*10^6)); //solution (ii) pf=cos(angle_z*(%pi/180)); -disp(sprintf("(ii) The power factor is %4.3f ",pf)); +disp(sprintf("(ii) The power factor is %f ",pf)); //solution (iii) p=E*I*pf; -disp(sprintf("(iii) The power absorbed by the source is %d W",p)); +disp(sprintf("(iii) The power absorbed by the source is %f W",p)); //END |