summaryrefslogtreecommitdiff
path: root/1445/CH2/EX2.13
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:38:01 +0530
committerprashantsinalkar2017-10-10 12:38:01 +0530
commitf35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch)
treeeb72842d800ac1233e9d890e020eac5fd41b0b1b /1445/CH2/EX2.13
parent7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff)
downloadScilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip
updated the code
Diffstat (limited to '1445/CH2/EX2.13')
-rw-r--r--1445/CH2/EX2.13/Ex2_13.sce37
1 files changed, 12 insertions, 25 deletions
diff --git a/1445/CH2/EX2.13/Ex2_13.sce b/1445/CH2/EX2.13/Ex2_13.sce
index 7d6d5143c..fce8566d7 100644
--- a/1445/CH2/EX2.13/Ex2_13.sce
+++ b/1445/CH2/EX2.13/Ex2_13.sce
@@ -1,49 +1,36 @@
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 13
+clc;
disp("CHAPTER 2");
disp("EXAMPLE 13");
-//given
-//load of impedance 1+j.1 ohm connected AC Voltage
-//AC Voltage represented by V=20.sqrt(2).cos(wt+10) volt
-
-//to find
-//current in form of i=Im.sin(wt+phi) A
-// real power
-
-//Equations to be used
-//real Power pr=Vrms.Irms.cos (phi)
-// =(Vm/sqrt(2)).(Im/sqrt(2)).cos(phi)
-// apparent power pa=Vrms.Irms
-// =(Vm/sqrt(2)).(Im/sqrt(2))
-//
//VARIABLE INITIALIZATION
-z1=1+(%i*1); //impedance in rectangular form in Ohms
-v=20*sqrt(2); //amplitude of rms value of voltage in Volts
+z=1+(%i*1); //load impedance in rectangular form in Ohms
+v=20*sqrt(2); //amplitude of rms value of voltage in Volts
//SOLUTION
-function [z,angle]=rect2pol(x,y);
-z=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y
-angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
+function [zp,angle]=rect2pol(x,y); //function 'rect2pol()' converts impedance in rectangular form to polar form
+zp=sqrt((x^2)+(y^2)); //z= (x) + j(y)= (1)+ j(1); 'zp' is in polar form
+angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees
endfunction;
//solution (i)
-[z,angle]=rect2pol(1,1);
+[zp,angle]=rect2pol(1,1); //since x=1 and y=1
v=v/sqrt(2);
-angle_v=100; //v=(20/sqrt(2))*sin(ωt+100)
-I=v/z; //RMS value of current
+angle_v=100; //v=(20/sqrt(2))*sin(ωt+100)
+I=v/zp; //RMS value of current
angle_I=angle_v-angle;
Im=I*sqrt(2);
disp(sprintf("(i) The current in load is i = %d sin(ωt+%d) A",Im,angle_I));
//solution (ii)
-pr=(v/sqrt(2))*(I*sqrt(2))*cos(angle*(%pi/180));
-disp(sprintf("(ii) The real power is %4.0f W",pr));
+p=(v/sqrt(2))*(I*sqrt(2))*cos(angle*(%pi/180));
+disp(sprintf("(ii) The real power is %f W",p));
//solution (iii)
pa=(v/sqrt(2))*(I*sqrt(2));
-disp(sprintf("(ii) The apparent power is %6.2f VAR",pa));
+disp(sprintf("(ii) The apparent power is %f VAR",pa));
//END