diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1358/CH5/EX5.7/Example57.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1358/CH5/EX5.7/Example57.sce')
-rwxr-xr-x | 1358/CH5/EX5.7/Example57.sce | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/1358/CH5/EX5.7/Example57.sce b/1358/CH5/EX5.7/Example57.sce new file mode 100755 index 000000000..8e62f3e05 --- /dev/null +++ b/1358/CH5/EX5.7/Example57.sce @@ -0,0 +1,47 @@ +// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 5, Example 7")
+disp("The following equation provides the relationship between the temperature rise and the desired angles:")
+disp("T02 - T01 = lambda*U*Ca*(tan(beta1) - tan(beta2))/Cp")
+disp("T02-T01 = Rise")
+Rise = 24;
+lambda = 0.93;
+U = 205;
+Ca = 155.5;
+Cp = 1005;
+disp("Dif = tan(beta1) - tan(beta2)")
+Dif = Rise*Cp/(U*lambda*Ca)
+disp("Using the degree of reaction equation:")
+disp("DOF = Ca*(tan(beta1) + tan(beta2))/(2*U)")
+disp("tan(beta1) + tan(beta2) = Add")
+DOF = 0.5;
+Add = DOF*2*U/Ca
+beta1 = atan((Add+Dif)/2)*180/%pi
+alpha2 = beta1
+beta2 = atan(Add - tan(beta1*%pi/180))*180/%pi
+alpha1 = beta2
+disp("The mean radius, rm, is given by: in m")
+N = 152;//rpm
+rm = U/(2*%pi*N)
+disp("The blade height, h in m, is given by: m = rho*ACa, where A is the annular area of the flow.")
+C1 = Ca/cos(alpha1*%pi/180)
+T01 = 290;
+disp("Static temperature in kelvin")
+T1 = T01- C1^2 /(2*Cp)
+disp("Using the isentropic P–T relation:")
+disp("Static pressure: P1 in bars")
+P01 = 1;
+P1 = P01*(T1/T01)^3.5
+R = 287/1000;
+disp("Density rho1 in kg/m3")
+rho1 = P1/(R*T1) * 100
+disp("From the continuity equation:")
+m = 22;
+A = m/(rho1*Ca)
+disp("and the blade height:")
+rm = 0.215;
+h =A/(2*%pi*rm)
|