summaryrefslogtreecommitdiff
path: root/135/CH5
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /135/CH5
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '135/CH5')
-rwxr-xr-x135/CH5/EX5.1/EX1.sce13
-rwxr-xr-x135/CH5/EX5.10/EX10.sce25
-rwxr-xr-x135/CH5/EX5.11/EX11.sce14
-rwxr-xr-x135/CH5/EX5.12/EX12.sce33
-rwxr-xr-x135/CH5/EX5.13/EX13.sce18
-rwxr-xr-x135/CH5/EX5.14/EX14.sce15
-rwxr-xr-x135/CH5/EX5.15/EX15.sce19
-rwxr-xr-x135/CH5/EX5.16/EX16.sce9
-rwxr-xr-x135/CH5/EX5.17/EX17.sce17
-rwxr-xr-x135/CH5/EX5.18/EX18.sce8
-rwxr-xr-x135/CH5/EX5.2/EX2.sce19
-rwxr-xr-x135/CH5/EX5.3/EX3.sce24
-rwxr-xr-x135/CH5/EX5.4/EX4.sce16
-rwxr-xr-x135/CH5/EX5.5/EX5.sce24
-rwxr-xr-x135/CH5/EX5.6/EX6.sce15
-rwxr-xr-x135/CH5/EX5.7/EX7.sce25
-rwxr-xr-x135/CH5/EX5.8/EX8.sce19
-rwxr-xr-x135/CH5/EX5.9/EX9.sce31
18 files changed, 344 insertions, 0 deletions
diff --git a/135/CH5/EX5.1/EX1.sce b/135/CH5/EX5.1/EX1.sce
new file mode 100755
index 000000000..eb43cead9
--- /dev/null
+++ b/135/CH5/EX5.1/EX1.sce
@@ -0,0 +1,13 @@
+// Example 5.1: RB, RC
+clc, clear
+IB=40e-6; // in amperes
+VCE=6; // in volts
+VCC=12; // in volts
+betaf=80;
+VBE=0.7; // in volts
+RB=(VCC-VBE)/IB; // in ohms
+RC=(VCC-VCE)/(betaf*IB); // in ohms
+RB=RB*1e-3; // in kilo-ohms
+RC=RC*1e-3; // in kilo-ohms
+disp(RB,"RB (kΩ) =");
+disp(RC,"RC (kΩ) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.10/EX10.sce b/135/CH5/EX5.10/EX10.sce
new file mode 100755
index 000000000..47532ea14
--- /dev/null
+++ b/135/CH5/EX5.10/EX10.sce
@@ -0,0 +1,25 @@
+// Example 5.10: (i) S(ICO) for RB/RE=10 and change in IC
+// (ii) S(VBE) for RB = 240 kΩ, RE = 1 kΩ and change in IC
+clc, clear
+bta=100;
+
+disp("Part (i)");
+RB_RE=10; // RB/RE
+S_ICO=(1+bta)*(1+RB_RE)/(1+bta+RB_RE);
+// From Table 5.1
+del_ICO=(20-0.1)*1e-9; // in amperes
+del_IC=S_ICO*del_ICO; // in amperes
+del_IC=del_IC*1e6; // in micro-amperes
+disp(S_ICO,"S(ICO) for RB/RE=10");
+disp(del_IC,"Change in IC (μA) =");
+
+disp("Part (ii)");
+RB=240e3; // in kilo-ohms
+RE=1e3; // in kilo-ohms
+S_VBE=-bta/(RB+(1+bta)*RE);
+// From Table 5.1
+del_VBE=0.48-0.65; // in volts
+del_IC=S_VBE*del_VBE; // in amperes
+del_IC=del_IC*1e6; // in micro-amperes
+disp(S_VBE,"S(VBE) for (RB = 240 kΩ, RE = 1 kΩ) =");
+disp(del_IC,"Change in IC (μA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.11/EX11.sce b/135/CH5/EX5.11/EX11.sce
new file mode 100755
index 000000000..afe713711
--- /dev/null
+++ b/135/CH5/EX5.11/EX11.sce
@@ -0,0 +1,14 @@
+// Example 5.11: S(β), IC at 100°C
+clc, clear
+IC=2e-3; // at 25°C in amperes
+// From Table 5.1
+bta1=50; // at 25°C
+bta2=80; // at 100°C
+RB_RE=10; // RB/RE
+S=IC*(1+RB_RE)/(bta1*(1+bta2+RB_RE));
+del_bta=bta2-bta1;
+del_IC=S*del_bta; // in amperes
+IC=IC+del_IC; // at 100°C in amperes
+IC=IC*1e3; // at 100°C in mili-amperes
+disp(S,"S(β) =");
+disp(IC,"IC at 100°C (mA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.12/EX12.sce b/135/CH5/EX5.12/EX12.sce
new file mode 100755
index 000000000..0a73faece
--- /dev/null
+++ b/135/CH5/EX5.12/EX12.sce
@@ -0,0 +1,33 @@
+// Example 5.12: Variation of IC over the temperature range -65°C to 175°C
+clc, clear
+RB_RE=2; // RB/RE
+RE=4.7e3; // in ohms
+IC=2e-3; // at 25°C in amperes
+// From Table 5.1
+bta=50; // at 25°C
+S_ICO=(1+bta)*(1+RB_RE)/(1+bta+RB_RE);
+S_VBE=-bta/(RE*(1+bta+RB_RE));
+// From Table 5.1
+bta1=20; // at -65°C
+bta2=120; // at 175°C
+S_bta1=IC*(1+RB_RE)/(bta*(1+bta1+RB_RE)); // For 25°C to -65°C
+S_bta2=IC*(1+RB_RE)/(bta*(1+bta2+RB_RE)); // For 25°C to 175°C
+// From Table 5.1
+
+// For 25°C to -65°C
+del_ICO=(0.2e-3-0.1)*1e-9; // in amperes
+del_VBE=0.85-0.65; // in volts
+del_bta=bta1-bta;
+del_IC=S_ICO*del_ICO+S_VBE*del_VBE+S_bta1*del_bta; // in amperes
+IC1=IC+del_IC; // at -65°C in amperes
+IC1=IC1*1e3; // at -65°C in mili-amperes
+disp(IC1,"IC at -65°C (mA) =");
+
+// For 25°C to 175°C
+del_ICO=(3.3e3-0.1)*1e-9; // in amperes
+del_VBE=0.30-0.65; // in volts
+del_bta=bta2-bta;
+del_IC=S_ICO*del_ICO+S_VBE*del_VBE+S_bta2*del_bta; // in amperes
+IC2=IC+del_IC; // at 175°C in amperes
+IC2=IC2*1e3; // at 175°C in mili-amperes
+disp(IC2,"IC at 175°C (mA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.13/EX13.sce b/135/CH5/EX5.13/EX13.sce
new file mode 100755
index 000000000..a35eafd8e
--- /dev/null
+++ b/135/CH5/EX5.13/EX13.sce
@@ -0,0 +1,18 @@
+// Example 5.13: (i) R1
+// (ii) R1 for IC = 10 μA
+clc, clear
+IC=1e-3; // in amperes
+VCC=10; // in volts
+bta=125;
+VBE=0.7; // in volts
+
+disp("Part (i)");
+R1=bta*(VCC-VBE)/((bta+2)*IC); // in ohms
+R1=R1*1e-3; // in kilo-ohms
+disp(R1,"R1 (kΩ) =");
+
+disp("Part (i)");
+IC=10e-6; // in amperes
+R1=bta*(VCC-VBE)/((bta+2)*IC); // in ohms
+R1=R1*1e-3; // in kilo-ohms
+disp(R1,"R1 for (IC = 10 μA) (kΩ) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.14/EX14.sce b/135/CH5/EX5.14/EX14.sce
new file mode 100755
index 000000000..266e61439
--- /dev/null
+++ b/135/CH5/EX5.14/EX14.sce
@@ -0,0 +1,15 @@
+// Example 5.14: R1, RE
+clc, clear
+Io=10e-6; // in amperes
+VCC=10; // in volts
+bta=125;
+VBE=0.7; // in volts
+VT=25e-3; // in volts
+// Let
+I_ref=1e-3; // in amperes
+R1=(VCC-VBE)/I_ref; // in ohms
+R1=R1*1e-3; // in kilo-ohms
+RE=VT*log(I_ref/Io)/((1+1/bta)*Io); // in ohms
+RE=RE*1e-3; // in kilo-ohms
+disp(R1,"R1 (kΩ) =");
+disp(RE,"RE (kΩ) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.15/EX15.sce b/135/CH5/EX5.15/EX15.sce
new file mode 100755
index 000000000..02c65cacf
--- /dev/null
+++ b/135/CH5/EX5.15/EX15.sce
@@ -0,0 +1,19 @@
+// Example 5.11: IC1, IC2, IC3
+clc, clear
+bta=125;
+VBE=0.7; // in volts
+VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts
+// From Fig. 5.27
+VC=9; // in volts
+RC=30; // in kilo-ohms
+RE=1.94; // in kilo-ohms
+I_ref=(VC-VBE)/RC; // in mili-amperes
+IC=I_ref*bta/(3+bta); // in mili-amperes
+for i=0.01:0.001:0.5
+ if abs(VT*log(IC/i)/(i*(1+1/bta))-RE)<=0.1 then
+ break;
+ end
+end
+disp(IC,"IC1 (mA) =");
+disp(IC,"IC2 (mA) =");
+disp(i,"IC3 (mA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.16/EX16.sce b/135/CH5/EX5.16/EX16.sce
new file mode 100755
index 000000000..84e10ffc6
--- /dev/null
+++ b/135/CH5/EX5.16/EX16.sce
@@ -0,0 +1,9 @@
+// Example 5.16: Io
+clc, clear
+bta=100;
+VBE=0.7; // in volts
+// From Fig. 5.30
+// Writing KVL for the indicated loop
+I_ref=(10-VBE)/10; // in mili-amperes
+Io=bta*I_ref/(2*(1+bta)); // in mili-amperes
+disp(Io,"Io (mA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.17/EX17.sce b/135/CH5/EX5.17/EX17.sce
new file mode 100755
index 000000000..33ec5c408
--- /dev/null
+++ b/135/CH5/EX5.17/EX17.sce
@@ -0,0 +1,17 @@
+// Example 5.17: (i) IC1 and IC2
+// (ii) RC so that Vo = 6 V
+clc, clear
+bta=200;
+// From Fig. 5.31
+
+disp("Part (i)");
+I_ref=(12-0.7)/15; // in amperes
+I1=0.7/2.8; // in amperes
+IC=(I_ref-I1)*bta/(bta+2); // in mili-amperes
+disp(IC,"IC1 (mA) =");
+disp(IC,"IC2 (mA) =");
+
+disp("Part (ii)");
+Vo=6; // in volts
+RC=(12-Vo)/IC; // in kilo-ohms
+disp(RC,"RC so that (Vo = 6 V) (kΩ) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.18/EX18.sce b/135/CH5/EX5.18/EX18.sce
new file mode 100755
index 000000000..307dca50a
--- /dev/null
+++ b/135/CH5/EX5.18/EX18.sce
@@ -0,0 +1,8 @@
+// Example 5.18: Emitter current in transistor Q3
+clc, clear
+bta=100;
+VBE=0.75; // in volts
+// From Fig. 5.32
+I=(10-VBE)/4.7; // in mili-amperes
+IE=I/2; // in mili-amperes
+disp(IE,"Emitter current in transistor Q3 (mA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.2/EX2.sce b/135/CH5/EX5.2/EX2.sce
new file mode 100755
index 000000000..809e572f8
--- /dev/null
+++ b/135/CH5/EX5.2/EX2.sce
@@ -0,0 +1,19 @@
+// Example 5.2: VCEQ, ICQ
+clc, clear
+VBE=0.7; // in volts
+betaf=50;
+// From Fig. 5.11(a)
+VCC=18; // in volts
+R1=82e3; // in ohms
+R2=22e3; // in ohms
+RC=5.6e3; // in ohms
+RE=1.2e3; // in ohms
+// Using Thevnin's theorem to obtain equivalent circuit given in Fig. 5.11(b)
+VBB=R2*VCC/(R1+R2); // in volts
+RB=R1*R2/(R1+R2); // in ohms
+IB=(VBB-VBE)/(RB+(1+betaf)*RE); // in amperes
+IC=betaf*IB; // in amperes
+VCE=VCC-IC*(RC+RE)-IB*RE; // in volts
+IC=IC*1e3; // in mili-amperes
+disp(VCE,"VCEQ (V) =");
+disp(IC,"ICQ (mA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.3/EX3.sce b/135/CH5/EX5.3/EX3.sce
new file mode 100755
index 000000000..70ab60c54
--- /dev/null
+++ b/135/CH5/EX5.3/EX3.sce
@@ -0,0 +1,24 @@
+// Example 5.3: R1, R2, RC, RE
+clc, clear
+IC=1e-3; // in amperes
+VCC=12; // in volts
+betaf=100;
+VBE=0.7; // in volts
+// As suggested in the design constraints, allocate 1/3VCC to RC, another 1/3VCC to R2 leaving 1/3VCC for VCEQ.
+VB=4; // in volts
+VE=VB-VBE; // in volts
+// Neglecting base current,
+RE=VE/IC; // in ohms
+// Select the current through R1R2 equal to 0.1IC
+R1_plus_R2=VCC/(0.1*IC); // in ohms
+R2=VB*R1_plus_R2/VCC; // in ohms
+R1=R1_plus_R2-R2; // in ohms
+RC=VCC/(3*IC); // in ohms
+R1=R1*1e-3; // in kilo-ohms
+R2=R2*1e-3; // in kilo-ohms
+RC=RC*1e-3; // in kilo-ohms
+RE=RE*1e-3; // in kilo-ohms
+disp(R1,"R1 (kΩ) =");
+disp(R2,"R2 (kΩ) =");
+disp(RC,"RC (kΩ) =");
+disp(RE,"RE (kΩ) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.4/EX4.sce b/135/CH5/EX5.4/EX4.sce
new file mode 100755
index 000000000..d94e263e3
--- /dev/null
+++ b/135/CH5/EX5.4/EX4.sce
@@ -0,0 +1,16 @@
+// Example 5.4: VCEQ, ICQ
+clc, clear
+VBE=0.7; // in volts
+betaf=45;
+// From Fig. 5.14
+VEE=9; // in volts
+RB=100e3; // in ohms
+RC=1.2e3; // in ohms
+// Applying KVL in the clockwise direction base emitter loop
+IB=(VEE-VBE)/RB; // in amperes
+IC=betaf*IB; // in amperes
+// Writing KVL for the collector loop
+VCE=VEE-IC*RC; // in volts
+IC=IC*1e3; // in mili-amperes
+disp(VCE,"VCEQ (V) =");
+disp(IC,"ICQ (mA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.5/EX5.sce b/135/CH5/EX5.5/EX5.sce
new file mode 100755
index 000000000..2ffaf877b
--- /dev/null
+++ b/135/CH5/EX5.5/EX5.sce
@@ -0,0 +1,24 @@
+// Example 5.5: VCEQ, ICQ
+clc, clear
+VBE=0.7; // in volts
+betaf=120;
+// From Fig. 5.15
+VCC=20; // in volts
+VEE=20; // in volts
+R1=8.2e3; // in ohms
+R2=2.2e3; // in ohms
+RC=2.7e3; // in ohms
+RE=1.8e3; // in ohms
+// Using Thevnin's theorem to obtain equivalent circuit given in Fig. 5.16(b)
+RB=R1*R2/(R1+R2); // in ohms
+// From Fig. 5.16(a)
+I=(VCC+VEE)/(R1+R2); // in amperes
+VBB=I*R2-VEE; // in volts
+// Writing KVL for the base emitter loop and putting Ic= βF*Ib gives
+IB=(VEE+VBB-VBE)/(RB+(1+betaf)*RE); // in amperes
+IC=betaf*IB; // in amperes
+// KVL for the collector loop gives
+VCE=VCC+VEE-IC*(RC+RE)-IB*RE; // in volts
+IC=IC*1e3; // in mili-amperes
+disp(VCE,"VCEQ (V) =");
+disp(IC,"ICQ (mA) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.6/EX6.sce b/135/CH5/EX5.6/EX6.sce
new file mode 100755
index 000000000..e5f697da1
--- /dev/null
+++ b/135/CH5/EX5.6/EX6.sce
@@ -0,0 +1,15 @@
+// Example 5.6: RF so that IE=+2 mA
+clc, clear
+IE=2e-3; // in amperes
+VBE=0.7; // in volts
+betaf=49;
+// From Fig. 5.17
+VCC=12; // in volts
+RB=25e3; // in ohms
+RC=2e3; // in ohms
+I1=VBE/RB; // in amperes
+IB=IE/(1+betaf); // in amperes
+// KVL for the indicated loop gives
+RF=(VCC-RC*(I1+(1+betaf)*IB)-VBE)/(I1+IB); // in ohms
+RF=RF*1e-3; // in kilo-ohms
+disp(RF,"RF so that IE=+2 mA (kΩ) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.7/EX7.sce b/135/CH5/EX5.7/EX7.sce
new file mode 100755
index 000000000..ec8557af7
--- /dev/null
+++ b/135/CH5/EX5.7/EX7.sce
@@ -0,0 +1,25 @@
+// Example 5.7: RCQ, RE
+clc, clear
+VCEQ=3; // in volts
+VBE=0.7; // in volts
+betaf=200;
+// From Fig. 5.18(a)
+VCC=6; // in volts
+VEE=6; // in volts
+R1=90e3; // in ohms
+R2=90e3; // in ohms
+// Using Thevnin's theorem to obtain equivalent circuit given in Fig. 5.18(b)
+RB=R1*R2/(R1+R2); // in ohms
+VBB=R2*(VCC+VEE)/(R1+R2); // in volts
+// In the output loop
+x=VEE-VCEQ; // x = (IC+IB)RE in volts
+// Applying KVL in the base emitter loop
+IB=(VEE-VBE-x)/RB; // in amperes
+IC=betaf*IB; // in amperes
+// In the output loop
+RC=VCC/IC; // in ohms
+RE=x/(IC+IB); // in ohms
+RC=RC*1e-3; // in kilo-ohms
+RE=RE*1e-3; // in kilo-ohms
+disp(RC,"RC (kΩ) =");
+disp(RE,"RE (kΩ) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.8/EX8.sce b/135/CH5/EX5.8/EX8.sce
new file mode 100755
index 000000000..413d2c377
--- /dev/null
+++ b/135/CH5/EX5.8/EX8.sce
@@ -0,0 +1,19 @@
+// Example 5.8: VCEQ
+clc, clear
+VBE=-0.7; // in volts
+betaf=120;
+// From Fig. 5.19(a)
+VCC=18; // in volts
+R1=47e3; // in ohms
+R2=10e3; // in ohms
+RC=2.4e3; // in ohms
+RE=1.1e3; // in ohms
+// Using Thevnin's theorem to obtain equivalent circuit given in Fig. 5.19(b)
+VBB=R2*VCC/(R1+R2); // in volts
+RB=R1*R2/(R1+R2); // in ohms
+// Applying KVL in the base emitter loop and putting Ic= βF*Ib
+IB=(VBB+VBE)/(RB+(1+betaf)*RE); // in amperes
+IC=betaf*IB; // in amperes
+// In the collector emitter loop
+VCE=-VCC+IC*(RC+RE)+IB*RE; // in volts
+disp(VCE,"VCEQ (V) ="); \ No newline at end of file
diff --git a/135/CH5/EX5.9/EX9.sce b/135/CH5/EX5.9/EX9.sce
new file mode 100755
index 000000000..2796beb59
--- /dev/null
+++ b/135/CH5/EX5.9/EX9.sce
@@ -0,0 +1,31 @@
+// Example 5.9 :(i) RB
+// (ii) Stability factor
+// (iii) IC at 100°C
+clc, clear
+bta=50;
+VBE=0.7; // in volts
+VCE=5; // in volts
+// From Fig. 5.21
+VCC=24; // in volts
+RC=10e3; // in ohms
+RE=500; // in ohms
+
+disp("Part (i)");
+// Applying KVL to the collector emitter circuit and putting Ic= βF*Ib
+IB=(VCC-VCE)/((RC+RE)*(bta+1)); // in amperes
+IC=bta*IB; // at 25°C in amperes
+RB=(VCE-VBE)/IB; // in ohms
+RB=RB*1e-3; // in kilo-ohms
+disp(RB,"RB (kΩ) =")
+
+disp("Part (ii)");
+S=(1+bta)/(1+bta*(RC+RE)/(RC+RE+RB*1e3)); // Stability factor
+disp(S,"Stability factor =");
+
+disp("Part (iii)");
+// From Table 5.1
+del_ICO=(20-0.1)*1e-9; // in amperes
+del_IC=S*del_ICO; // in amperes
+IC=IC+del_IC; // at 100°C in amperes
+IC=IC*1e3; // at 100°C in mili-amperes
+disp(IC,"IC at 100°C (mA) ="); \ No newline at end of file