diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1328/CH6 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '1328/CH6')
-rw-r--r-- | 1328/CH6/EX6.1/6_1.sce | 119 | ||||
-rw-r--r-- | 1328/CH6/EX6.2/6_2.sce | 16 | ||||
-rw-r--r-- | 1328/CH6/EX6.3/6_3.sce | 129 |
3 files changed, 264 insertions, 0 deletions
diff --git a/1328/CH6/EX6.1/6_1.sce b/1328/CH6/EX6.1/6_1.sce new file mode 100644 index 000000000..5d43b8d65 --- /dev/null +++ b/1328/CH6/EX6.1/6_1.sce @@ -0,0 +1,119 @@ +printf("\t example 6.1 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=160; // inlet hot fluid,F
+T2=100; // outlet hot fluid,F
+t1=80; // inlet cold fluid,F
+t2=120; // outlet cold fluid,F
+w=9820; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for benzene \n");
+tav=((t1+t2)/2); // F
+printf("\t average temperature of benzene is : %.0f F \n",tav);
+c=0.425; // Btu/(lb)*(F)
+Q=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for benzene is : %.2e Btu/hr \n",Q);
+printf("\t for toulene \n");
+Tav=((T1+T2)/2); //F
+printf("\t average temperature of toulene is : %.0f F \n",Tav);
+c=0.44; // Btu/(lb)*(F)
+W=((Q)/((c)*(T1-T2))); // lb/hr
+printf("\t W is :%.2e lb/hr \n",W);
+printf("\t 2.LMTD \n");
+printf("\t for counter current flow \n");
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTD);
+printf("\t 3.caloric temperatures \n");
+printf("\t both streams will show that neither is viscous at the cold terminal (the viscosities less than 1 centipoise) and the temperature ranges and temperature difference are moderate. The coefficients may accordingly be evaluated from properties at the arithmetic mean, and the value of (mu/muw)^0.14 may be assumed equal to 1.0 \n");
+tav=((t1+t2)/2); // F
+printf("\t average temperature of benzene is : %.0f F \n",tav);
+Tav=((T1+T2)/2); //F
+printf("\t average temperature of toulene is : %.0f F \n",Tav);
+printf("\t hot fluid:annulus,toulene \n");
+D1=0.138; // ft
+D2=0.1725; // ft
+aa=((%pi)*(D2^2-D1^2)/4); // flow area,ft^2
+printf("\t flow area is : %.5f ft^2 \n",aa);
+De=(D2^2-D1^2)/D1; // equiv diameter,ft
+printf("\t equiv diameter is : %.4f ft \n",De);
+Ga=(W/aa); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Ga);
+mu1=0.41*2.42; // at 130 F,lb/(ft)*(hr)
+Rea=((De)*(Ga)/mu1); // reynolds number
+printf("\t reynolds number is : %.1e \n",Rea);
+jH=167; // from fig.24
+c=0.44; // Btu/(lb)*(F),at 130F
+k=0.085; // Btu/(hr)*(ft^2)*(F/ft), from table 4
+Pr=((c)*(mu1)/k)^(1/3); // prandelt number raised to power 1/3
+printf("\t Pr is : %.3f \n",Pr);
+ho=((jH)*(k/De)*(Pr)*(1^0.14)); // using eq.6.15b,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
+printf("\t cold fluid:inner pipe,benzene \n");
+D=0.115; // ft
+ap=((%pi)*(D^2)/4); // flow area, ft^2
+printf("\t flow area is : %.4f ft^2 \n",ap);
+Gp=(w/ap); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gp);
+mu2=0.5*2.42; // at 130 F,lb/(ft)*(hr)
+Rep=((D)*(Gp)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Rep);
+jH=236; // from fig.24
+c=0.425; // Btu/(lb)*(F),at 130F
+k=0.091; // Btu/(hr)*(ft^2)*(F/ft), from table 4
+Pr=((c)*(mu2)/k)^(1/3); // prandelt number raised to power 1/3
+printf("\t Pr is : %.3f \n",Pr);
+hi=((jH)*(k/D)*(Pr)*(1^0.14)); // using eq.6.15a,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
+ID=1.38; // ft
+OD=1.66; //ft
+hio=((hi)*(ID/OD)); // using eq.6.5
+printf("\t Correct hi to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Rd=0.002; // required by problem,(hr)*(ft^2)*(F)/Btu
+UD=((Uc)/((1)+(Uc*Rd))); // design overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD);
+A=((Q)/((UD)*(LMTD))); // required surface,ft^2
+printf("\t required surface is : %.1f ft^2 \n",A);
+A1=0.435; // From Table 11 for 1(1/4)in IPS standard pipe there are 0.435 ft2 of external surface per foot length,ft^2
+L=(A/A1); // required length;lin ft
+printf("\t required length is : %.0f lin ft \n",L);
+printf("\t This may be fulfilled by connecting three 20-ft hairpins in series \n");
+A2=120*0.435; // actual surface supplied,ft^2
+printf("\t actual surface supplied is : %.1f ft^2 \n",A2);
+UD=((Q)/((A2)*(LMTD)));
+printf("\t actual design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD);
+Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t pressure drop for annulus \n");
+De1=(D2-D1); //ft
+printf("\t De1 is : %.4f ft \n",De1);
+Rea1=((De1)*(Ga)/mu1); // reynolds number
+printf("\t reynolds number is : %.2e \n",Rea1);
+f=(0.0035)+((0.264)/(Rea1^0.42)); // friction factor, using eq.3.47b
+printf("\t friction factor is : %.4f \n",f);
+s=0.87;
+row=62.5*0.87; // from table 6
+delFa=((4*f*(Ga^2)*L)/(2*4.18*(10^8)*(row^2)*(De1))); // ft
+printf("\t delFa is : %.1f ft \n",delFa);
+V=((Ga)/(3600*row)); //fps
+printf("\t V is : %.2f fps \n",V);
+Fl=((3*(V^2))/(2*32.2)); //ft
+printf("\t Fl is : %.1f ft \n",Fl);
+delPa=((delFa+Fl)*(row)/144); // psi
+printf("\t delPa is : %.1f psi \n",delPa);
+printf("\t allowable delPa is 10 psi \n");
+printf("\t pressure drop for inner pipe \n");
+f=(0.0035)+((0.264)/(Rep^0.42)); // friction factor, using eq.3.47b
+printf("\t friction factor is : %.4f \n",f);
+s=0.88;
+row=62.5*0.88; // from table 6
+delFp=((4*f*(Gp^2)*L)/(2*4.18*(10^8)*(row^2)*(D))); // ft
+printf("\t delFp is : %.1f ft \n",delFp);
+delPp=((delFp)*(row)/144); // psi
+printf("\t delPp is : %.1f psi \n",delPp);
+printf("\t allowable delPp is 10 psi \n");
+//end
diff --git a/1328/CH6/EX6.2/6_2.sce b/1328/CH6/EX6.2/6_2.sce new file mode 100644 index 000000000..1a46a354d --- /dev/null +++ b/1328/CH6/EX6.2/6_2.sce @@ -0,0 +1,16 @@ +printf("\t example 6.2 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=300; // inlet hot fluid,F
+T2=200; // outlet hot fluid,F
+t1=190; // inlet cold fluid,F
+t2=220; // outlet cold fluid,F
+n=6; // number of parallel streams
+P=((T2-t1)/(T1-t1));
+printf("\t P is : %.3f \n",P);
+R=((T1-T2)/((n)*(t2-t1)));
+printf("\t R is : %.3f \n",R);
+gama=((1-P)/((2.3)*((n*R)/(R-1))*log10(((R-1)/R)*(1/P)^(1/n)+(1/R)))); // using eq.6.35a
+printf("\t gama is : %.3f \n",gama);
+delt=(gama*(T1-t1)); // true temperature difference,F
+printf("\ true temperature difference is : %.1f F \n",delt);
+//end
diff --git a/1328/CH6/EX6.3/6_3.sce b/1328/CH6/EX6.3/6_3.sce new file mode 100644 index 000000000..cdc6bb37a --- /dev/null +++ b/1328/CH6/EX6.3/6_3.sce @@ -0,0 +1,129 @@ +printf("\t example 6.3 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=450; // inlet hot fluid,F
+T2=350; // outlet hot fluid,F
+t1=300; // inlet cold fluid,F
+t2=310; // outlet cold fluid,F
+W=6900; // lb/hr
+w=72500; // lb/hr
+printf("\t 1.for heat balance \n");
+printf("\t for lube oil \n");
+c=0.62; // Btu/(lb)*(F)
+Q=((W)*(c)*(T1-T2)); // Btu/hr
+printf("\t total heat required for lube oil is : %.2e Btu/hr \n",Q);
+printf("\t for crude oil \n");
+c=0.585; // Btu/(lb)*(F)
+Q1=((w)*(c)*(t2-t1)); // Btu/hr
+printf("\t total heat required for crude oil is : %.2e Btu/hr \n",Q1); // calculation mistake in book
+delt1=T2-t1; //F
+delt2=T1-t2; // F
+printf("\t delt1 is : %.0f F \n",delt1);
+printf("\t delt2 is : %.0f F \n",delt2);
+LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
+printf("\t LMTD is :%.1f F \n",LMTD);
+A=((delt1)/(delt2));
+printf("\t ratio of two local temperature difference is : %.3f \n",A);
+Fc=0.395; // from fig.17
+Tc=((T2)+((Fc)*(T1-T2))); // caloric temperature of hot fluid,F
+printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc);
+tc=((t1)+((Fc)*(t2-t1))); // caloric temperature of cold fluid,F
+printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
+printf("\t hot fluid:annulus,lube oil \n");
+D1=0.199; // ft
+D2=0.256; // ft
+aa=((%pi)*(D2^2-D1^2)/4); // flow area,ft^2
+printf("\t flow area is : %.4f ft^2 \n",aa);
+De=(D2^2-D1^2)/D1; // equiv diameter,ft
+printf("\t equiv diameter is : %.2f ft \n",De);
+Ga=(W/aa); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Ga);
+mu1=3*2.42; // at 389.5F,lb/(ft)*(hr), from fig.14
+Rea=((De)*(Ga)/mu1); // reynolds number
+printf("\t reynolds number is : %.0e \n",Rea);
+jH=20.5; // from fig.24
+c=0.615; // Btu/(lb)*(F),at 130F
+k=0.067; // Btu/(hr)*(ft^2)*(F/ft), from table 4
+Pr=((c)*(mu1)/k)^(1/3); // prandelt number raised to power 1/3
+printf("\t Pr is : %.3f \n",Pr);
+Ho=((jH)*(k/De)*(Pr)); // H0=(h0/phya),using eq.6.15,Btu/(hr)*(ft^2)*(F)
+printf("\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Ho);
+printf("\t cold fluid:inner pipe,crude oil \n");
+D=0.172; // ft
+ap=((%pi)*(D^2)/4); // flow area, ft^2
+printf("\t flow area is : %.4f ft^2 \n",ap);
+Gp=(w/(2*ap)); // mass velocity,lb/(hr)*(ft^2)
+printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gp);
+mu2=0.83*2.42; // at 304 F,lb/(ft)*(hr)
+Rep=((D)*(Gp)/mu2); // reynolds number
+printf("\t reynolds number is : %.2e \n",Rep);
+jH=320; // from fig.24
+c=0.585; // Btu/(lb)*(F),at 304F,from fig.4
+k=0.073; // Btu/(hr)*(ft^2)*(F/ft), from fig.1
+Pr=((c)*(mu2)/k)^(1/3); // prandelt number raised to power 1/3
+printf("\t Pr is : %.3f \n",Pr);
+Hi=((jH)*(k/D)*(Pr)*(1^0.14)); //Hi=(hi/phyp),using eq.6.15a,Btu/(hr)*(ft^2)*(F)
+printf("\t Hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hi);
+ID=2.067; // ft
+OD=2.38; //ft
+Hio=((Hi)*(ID/OD)); //Hio=(hio/phyp), using eq.6.5
+printf("\t Correct Hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hio);
+muw=0.77*2.42; // lb/(ft)*(hr), from fig.14
+phyp=(mu2/muw)^0.14;
+printf("\t phyp is : %.0f \n",phyp); // from fig.24
+hio=(Hio)*(1); // from eq.6.37
+printf("\t Correct hio to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
+tw=(tc)+(((Ho)/(Hio+Ho))*(Tc-tc)); // from eq.5.31
+printf("\t tw is : %.0f F \n",tw);
+muw=6.6*2.42; // lb/(ft)*(hr), from fig.14
+phya=(mu1/muw)^0.14;
+printf("\t phya is : %.1f \n",phya); // from fig.24
+ho=(Ho)*(phya); // from eq.6.36
+printf("\t Correct h0 to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n",ho);
+Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc);
+Rd=0.006; // required by problem,(hr)*(ft^2)*(F)/Btu
+UD=((Uc)/((1)+(Uc*Rd))); // design overall coefficient,Btu/(hr)*(ft^2)*(F)
+printf("\t design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+A=((Q)/((UD)*(LMTD))); // required surface,ft^2
+printf("\t required surface is : %.0f ft^2 \n",A);
+A1=0.622; // From Table 11,ft^2
+Lr=(A/A1); // required length;lin ft
+printf("\t required length is : %.0f lin ft \n",Lr);
+printf("\t Since two parallel streams are employed, use eight 20 ft hairpins or 320 lin. feet \n");
+L=320;
+A2=320*0.622; // actual surface supplied,ft^2
+printf("\t actual surface supplied is : %.1f ft^2 \n",A2);
+UD=((Q)/((A2)*(LMTD)));
+printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
+Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu
+printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd);
+printf("\t pressure drop for annulus \n");
+De1=.058; //ft
+printf("\t De1 is : %.3f ft \n",De1);
+Rea1=((De1)*(Ga)/7.25); // reynolds number
+printf("\t reynolds number is : %.2e \n",Rea1);
+f=(0.0035)+((0.264)/(2680^0.42)); // friction factor, using eq.3.47b
+printf("\t friction factor is : %.4f \n",f);
+s=0.775;
+row=62.5*0.775; // from fig 6
+delFa=((4*f*(Ga^2)*L)/(2*4.18*(10^8)*(row^2)*(De1))); // ft
+printf("\t delFa is : %.1f ft \n",delFa);
+V=((Ga)/(3600*row)); //fps
+printf("\t V is : %.1f fps \n",V);
+delFl=((8*(V^2))/(2*32.2)); //ft
+printf("\t delFl is : %.2f ft \n",delFl);
+delPa=((delFa+delFl)*(row)/144); // psi
+printf("\t delPa is : %.1f psi \n",delPa);
+printf("\t allowable delPa is 10 psi \n");
+printf("\t pressure drop for inner pipe \n");
+f=(0.0035)+((0.264)/(Rep^0.42)); // friction factor, using eq.3.47b
+printf("\t friction factor is : %.5f \n",f);
+s=0.76;
+row=62.5*0.76; // from table 6
+Lp=160;
+delFp=((4*f*(Gp^2)*Lp)/(2*4.18*(10^8)*(row^2)*(D))); // ft
+printf("\t delFp is : %.1f ft \n",delFp);
+delPp=((delFp)*(row)/144); // psi
+printf("\t delPp is : %.1f psi \n",delPp);
+printf("\t allowable delPp is 10 psi \n");
+// end
|