summaryrefslogtreecommitdiff
path: root/1328/CH17/EX17.5/17_5.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1328/CH17/EX17.5/17_5.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1328/CH17/EX17.5/17_5.sce')
-rw-r--r--1328/CH17/EX17.5/17_5.sce110
1 files changed, 110 insertions, 0 deletions
diff --git a/1328/CH17/EX17.5/17_5.sce b/1328/CH17/EX17.5/17_5.sce
new file mode 100644
index 000000000..5b5774818
--- /dev/null
+++ b/1328/CH17/EX17.5/17_5.sce
@@ -0,0 +1,110 @@
+printf("\t example 17.5 \n");
+printf("\t approximate values are mentioned in the book \n");
+T1=85;
+T2=120;
+R=0.93; // R=(L/G), for 1500 gpm
+printf("\t for 120percent of design \n");
+R1=1.2*R;
+printf("\t R is : %.3f \n",R1);
+H1=39.1; // at 87.2F
+H2=H1+(R1*(T2-T1));
+printf("\t H2 is : %.1f Btu \n",H2);
+// The area between the saturation line and the operating line represents the potential for heat transfer
+// at T=87.2F
+Hs=53.1; // from table in the solution
+d1=(Hs-H1);
+printf("\t difference is : %.1f \n",d1);
+//at t=90
+Hs=56.7; // fig 17.12
+H=42; // fig 17.12
+d2=Hs-H;
+printf("\t difference is : %.1f \n",d2);
+d=(d1+d2)/(2);
+printf("\t average of difference is : %.1f \n",d);
+dT=(90-87.2); // F
+nd1=(dT/d);
+printf("\t nd1 is : %.3f \n",nd1);
+// similarly calculating nd at each temperature and adding them will give you total nd value
+nd=1.53;
+printf("\t number of diffusing units : %.2f \n",nd);
+printf("\t for 80 percent of design \n");
+R2=0.8*R;
+printf("\t R is : %.3f \n",R2);
+H1=39.1; // at 87.2F
+H2=H1+(R2*(T2-T1));
+printf("\t H2 is : %.0f Btu \n",H2);
+// The area between the saturation line and the operating line represents the potential for heat transfer
+// at T=82.5F
+Hs=47.2; // from table in the solution
+d1=(Hs-H1);
+printf("\t difference is : %.1f \n",d1);
+//at t=85
+Hs=50; // fig 17.12
+H=40.8; // fig 17.12
+d2=Hs-H;
+printf("\t difference is : %.1f \n",d2);
+d=(d1+d2)/(2);
+printf("\t average of difference is : %.1f \n",d);
+dT=(85-82.5); // F
+nd1=(dT/d);
+printf("\t nd1 is : %.3f \n",nd1);
+// similarly calculating nd at each temperature and adding them will give you total nd value
+nd=1.92;
+printf("\t number of diffusing units : %.2f \n",nd);
+X=[1.115 0.93 0.74];
+Y=[1.53 1.70 1.92];
+plot2d(X,Y,style=3,rect=[0.7,1.4,1.3,2]);
+xtitle("KxaV/L vs L/G","L/G","nd");
+printf("\t trial 1 \n");
+R3=1.1;
+printf("\t R is : %.3f \n",R3);
+H1=34.5; // at 87.2F
+H2=H1+(R3*(T2-T1));
+printf("\t H2 is : %.0f Btu \n",H2);
+// The area between the saturation line and the operating line represents the potential for heat transfer
+// at T=85F
+Hs=50; // from table in the solution
+d1=(Hs-H1);
+printf("\t difference is : %.1f \n",d1);
+//at t=90
+Hs=56.7; // fig 17.12
+H=40; // fig 17.12
+d2=Hs-H;
+printf("\t difference is : %.1f \n",d2);
+d=(d1+d2)/(2);
+printf("\t average of difference is : %.1f \n",d);
+dT=(90-85); // F
+nd1=(dT/d);
+printf("\t nd1 is : %.3f \n",nd1);
+// similarly calculating nd at each temperature and adding them will give you total nd value
+nd=1.48;
+printf("\t number of diffusing units : %.2f \n",nd);
+R3=1.19; // from fig 17.14
+printf("\t L/G is : %.2f \n",R3);
+printf("\t trial 2 \n");
+R4=1.2;
+printf("\t R4 is : %.3f \n",R4);
+H1=34.5; // at 87.2F
+H2=H1+(R4*(T2-T1));
+printf("\t H2 is : %.1f Btu \n",H2);
+// The area between the saturation line and the operating line represents the potential for heat transfer
+// at T=85F
+Hs=50; // from table in the solution
+d1=(Hs-H1);
+printf("\t difference is : %.1f \n",d1);
+//at t=90
+Hs=56.7; // fig 17.12
+H=40.5; // fig 17.12
+d2=Hs-H;
+printf("\t difference is : %.1f \n",d2);
+d=(d1+d2)/(2);
+printf("\t average of difference is : %.1f \n",d);
+dT=(90-85); // F
+nd1=(dT/d);
+printf("\t nd1 is : %.3f \n",nd1);
+// similarly calculating nd at each temperature and adding them will give you total nd value
+nd=1.56;
+printf("\t number of diffusing units : %.2f \n",nd);
+R3=1.08; // from fig 17.14
+printf("\t L/G is : %.2f \n",R3);
+// end