summaryrefslogtreecommitdiff
path: root/1328/CH14
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1328/CH14
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1328/CH14')
-rw-r--r--1328/CH14/EX14.1/14_1.sce19
-rw-r--r--1328/CH14/EX14.2/14_2.sce59
-rw-r--r--1328/CH14/EX14.3/14_3.sce70
-rw-r--r--1328/CH14/EX14.4/14_4.sce121
-rw-r--r--1328/CH14/EX14.5/14_5.sce88
-rw-r--r--1328/CH14/EX14.6/14_6.sce84
-rw-r--r--1328/CH14/EX14.7/14_7.sce25
7 files changed, 466 insertions, 0 deletions
diff --git a/1328/CH14/EX14.1/14_1.sce b/1328/CH14/EX14.1/14_1.sce
new file mode 100644
index 000000000..c0baf073b
--- /dev/null
+++ b/1328/CH14/EX14.1/14_1.sce
@@ -0,0 +1,19 @@
+printf("\t example 14.1 \n");
+printf("\t approximate values are mentioned in the book \n");
+
+t1 = 300; //°F
+t2 = 226; //°F
+bs = 700; // Btu/((hr)(ft^2)(°F))
+//Heat Balance
+Qv = 10000 * 961; // Btu/hr
+printf("\tQevap is %.2e Btu/hr\n",Qv);
+Q3 = 10550 * 910; //Btu/hr
+printf("\tQ300°F is %.2e Btu/hr\n",Q3);
+
+delT = t1-t2; //°F
+printf("\tTemperature head = %.0f °F\n",delT);
+Ud = bs * 0.865;
+printf("\tOverall coefficient %.0f\n",Ud);
+A = Qv/(Ud * delT); //ft^2
+printf("\tSurface required is %.0f ft^2\n",A); //Wrong calculation in book
+//end
diff --git a/1328/CH14/EX14.2/14_2.sce b/1328/CH14/EX14.2/14_2.sce
new file mode 100644
index 000000000..d21acd6d8
--- /dev/null
+++ b/1328/CH14/EX14.2/14_2.sce
@@ -0,0 +1,59 @@
+printf("\t example 14.2 \n");
+printf("\t approximate values are mentioned in the book \n");
+
+wf = 50000; // lb/hr
+sf = wf * 0.10; // lb/hr
+tp = sf/0.50; // lb/hr
+printf("\tTotal product is %.0f lb/hr\n",tp);
+te = wf - tp;
+printf("\tTotal evaporation is %.0f lb/hr\n",te);
+cf = 1.0;
+tF = 100; // °F
+T1 = 244; // °F
+T2 = 125; // °F
+U1=600; // Btu/((hr)*(ft^2)*(°F))
+U2=250; // Btu/((hr)*(ft^2)*(°F))
+U3=125; // Btu/((hr)*(ft^2)*(°F))
+
+T = T1-T2;
+printf("\tTotal temperature difference is delT%.0f °F\n",T);
+df = (26.70- 1.95)/3; // psi/effect
+printf("\tAverage pressure difference is delP%.2f psi/effect \n",df);
+
+printf("\n\t\t\t\t\tPressure, psia\t\t delP, psi \t Steam or vapor, °F \t lambda, Btu/lb\n\tSteam chest, 1st effect \t 26.70 \t\t\t .... \t\t Ts = 244 \t\t ls = 949 \n\tSteam chest, 2nd effect \t 18.45 \t\t\t 8.25 \t\t t1 = 224 \t\t l1 = 961 \n\tSteam chest, 3rd effect \t 10.20(20.7 in. Hg) \t 8.25 \t\t t2 = 194 \t\t l1 = 981 \n\tVapor to condenser \t\t 1.95(26 in. Hg) \t 8.25 \t\t t2 = 125 \t\t l1 = 1022 \n");
+
+printf("\t949*Ws + 50000*(100-224) = 961*w1\n\t961*w1 + (50000 - w1)*(224-194) = 981 * w2\n\t981*w2 + (50000-w1-w2)(194-125) = 1022 * w2\n\tw1+w2+w3 = 40000\n");
+printf("\tSolving simultaneously\n");
+w1=12400;
+printf("\tw1 = %.2e \n",w1);
+w2=13300;
+printf("\tw2 = %.2e \n",w2);
+w3=14300;
+printf("\tw3 = %.2e \n",w3);
+
+Wt = w1+w2+w3;
+printf("\tW1-3 is %.0e \n",Wt);
+Ws = 19100;
+lms = 949;
+lm1 = 961;
+lm2 = 981;
+lm3 = 1022;
+Ts = 244;
+t1 = 224;
+t2 = 194;
+t3 = 125;
+
+A1 = (Ws * lms)/(U1*(Ts-t1)); //ft^2
+printf("\tA1 is %.0f ft^2 \n",A1);
+A2 = (w1*lm1)/(U2*(t1-t2)); //ft^2
+printf("\tA2 is %.0f ft^2 \n",A2);
+A3 = (w2 * lm2)/(U3*(t2-t3)); //ft^2
+printf("\tA3 is %.0f ft^2 \n",A3);
+
+hc = w3 * lm3; // Btu/hr, WRONG CALCULATION IN TEXT BOOK
+printf("\tHeat to condenser is %.3e Btu/hr\n",hc);
+wr = hc/(120-85); //lb/hr
+printf("\tWater requirement is %.1e lb/hr\n",wr);
+wr1 = wr/500;
+printf("\t= %.0f gpm \n",wr1);
+//end
diff --git a/1328/CH14/EX14.3/14_3.sce b/1328/CH14/EX14.3/14_3.sce
new file mode 100644
index 000000000..8eeaf8da2
--- /dev/null
+++ b/1328/CH14/EX14.3/14_3.sce
@@ -0,0 +1,70 @@
+printf("\t example 14.3 \n");
+printf("\t approximate values are mentioned in the book \n");
+//Same conditions as example 14.2
+U1 = 400; //Btu/((hr)*(ft^2)*(°F))
+U2 = 250; //Btu/((hr)*(ft^2)*(°F))
+U3 = 175; //Btu/((hr)*(ft^2)*(°F))
+
+w1 = 50000; // lb/hr From example 14.2
+wt = 40000; // lb/hr From example 14.2
+cf = 1; // From example 14.2
+
+printf("\t981*w2 + 50000*(100-125) = 1022*w3\n\t961*w1 + (50000 - w3)*(125-194) = 981 * w2\n\t949*Ws + (50000-w3-w2)(194-224) = 961 * w1\n\tw1+w2+w3 = 40000\n");
+printf("\tSolving simultaneously\n");
+w1 = 15950;
+w2 = 12900;
+w3 = 11150;
+lms = 949;
+lm1 = 961;
+lm2 = 981;
+lm3 = 1022;
+
+wt = w1+w2+w3;
+printf("\tw1-3 = %.0f \n",wt);
+Ws = 16950;
+A1 = (Ws*lms)/(U1*20); //ft^2
+printf("\tA1 is %.0f ft^2\n",A1);
+A2 = (w1*lm1)/(U2*30); //ft^2
+printf("\tA2 is %.0f ft^2\n",A2);
+A3 = (w2*lm2)/(U3*69); //ft^2
+printf("\tA3 is %.0f ft^2\n",A3);
+
+Avs = (A1 + A2 + A3)/3; //ft^2
+printf("\tAverage surface is %.0f ft^2\n",Avs);
+Av1 = 3 * Avs; //ft^2
+printf("\n\tWith a better distribution temperatures and pressure, Average surface is %.0f ft^2\n",Av1);
+printf("\tRecalculation\n");
+Av2 = 1500; //ft^2, assume
+dT1 = 28; //°F
+A4 = (20/dT1)*A1; //ft^2
+printf("\tA1 is %.0f ft^2\n",A4);
+dT2 = 41; //°F
+A5 = (30/dT2)*A2; //ft^2
+printf("\tA2 is %.0f ft^2\n",A5);
+dT3 = 50; //°F
+A6 = (69/50)*A3; //ft^2
+printf("\tA3 is %.0f ft^2\n",A6);
+del1 = 119; //°F
+printf("\tTs-t3 is %.0f °F\n",del1);
+printf("\t\t\t\t\tPressure, psia\t\t Steam or vapor, °F \t lambda, Btu/lb\n\tSteam chest, 1st effect \t 26.70 \t\t\tTs = 244 \t\t 949 \n\tSteam chest, 2nd effect \t 16.0 \t\t\t t1 = 216 \t\t 968 \n\tSteam chest, 3rd effect \t 16.4 in. Hg) \t\t t2 = 175 \t\t 992 \n\tVapor to condenser \t\t 26 in. Hg \t\t t3 = 125 \t\t l1 = 1022 \n");
+
+w1 = 15450; //Solving again for
+printf("\tw1 is %.0f\n",w1);
+w2 = 13200;
+printf("\tw2 is %.0f\n",w2);
+w3 = 11350;
+printf("\tw3 is %.0f\n",w3);
+Ws = 16850;
+printf("\tWs is %.0f\n",Ws);
+Hc = w3 * 1022;
+printf("\tHeat to condenser is %.2e Btu/hr\n",Hc);
+wr = Hc/(120-85); //lb/hr
+printf("\tWater requirement %.2e lb/hr\n",wr);
+wr1 = wr/500;
+printf("\t\t\t= %.0fgpm\n",wr1);
+ec = wt/Ws;
+printf("\tEconomy, lb evaporation/lb steam %.2f\n",ec);
+
+//comparision of forward and backward feed
+printf("\t\t\t\tForward\t\tBackward\n\tTotal steam, lb/hr\t19100\t\t16850\n\tCooling water, gpm\t840\t\t664\n\tTotal surface, ft^2\t4800\t\t4500");
+
diff --git a/1328/CH14/EX14.4/14_4.sce b/1328/CH14/EX14.4/14_4.sce
new file mode 100644
index 000000000..3bedd1d26
--- /dev/null
+++ b/1328/CH14/EX14.4/14_4.sce
@@ -0,0 +1,121 @@
+printf("\texample 14.4 \n");
+printf("\tapproximate values are mentioned in the book \n");
+//Assumed that 37500 lb/hr of 15 psig vapor is bled from the first effect for use in thevaccum pans
+printf("\n\tAVERAGE EVAPORATION PER SQUARE FOOT HEATING SURFACE FOR SUGAR EVAPORATORS\n");
+printf("\tEffects\t\tWater evaporated(lb/(hr)*(ft^2))\n");
+printf("\t1\t\t14-16\n\t2\t\t6-8\n\t3\t\t5-6\n\t4\t\t4-5\n\t5\t\t3-4\n");
+printf("\n\tEVAPORATOR SUMMARY\n");
+printf("\t------------------------------------------------------------------------------------------------------------------------------\n");
+printf("\tItem\t\t\t\t\t\t\t\t\tEffects\nt\t\t\t\t\t----------------------------------------------------------------------------------------------\n\t\t\t\t\t1A\t\t1B\t\t2\t\t3\t\t4\t\t5\n");
+printf("\t------------------------------------------------------------------------------------------------------------------------------\n");
+printf("\t1.Steam flow, lb/hr\t\t42600\t\t38000\n\t2.Steam pressure, psi/in.Hg\t30\t\t30\t\t15\t\t5\t\t4\t\t14.5\n");
+printf("\t3.Steam temp,°F\t\t\t274\t\t274\t\t250\t\t227\t\t205\t\t181\n");
+printf("\t4.delT,°F\t\t\t23\t\t23\t\t21\t\t20\t\t20\t\t27\n\t5.Liquor temp, °F\t\t251\t\t251\t\t229\t\t207\t\t185\t\t164\n\t6.BPR, °F\t\t\t1\t\t1\t\t2\t\t2\t\t4\t\t7\n\t7.Vapor temp, °F\t\t250\t\t250\t\t227\t\t205\t\t181\t\t147\n\t8.Vapor pressure, pis/in.Hg\t15\t\t15\t\t5\t\t4\t\t14.5\t\t23\n\t9.Lambda, Btu/lb\t\t946\t\t946\t\t960\t\t975\t\t990\t\t1010\n\t10.Liquor in, lb/hr\t\t229000\t\t190200\t\t154000\t\t117100\t\t87800\t\t64000\n\t11.Liqour out, lb/hr\t\t190200\t\t154000\t\t117100\t\t87800\t\t64000\t\t49600\n\t12.Evaporation,lb/hr\t\t38800\t\t36200\t\t36900\t\t29300\t\t23800\t\t14400\n\t13.°Brix(out)\t\t\t15.7\t\t19.4\t\t25.5\t\t34.4\t\t46.5\t\t50.0\n\t14.A,ft^2\t\t\t3500\t\t3500\t\t5000\t\t5000\t\t5000\t\t3500\n\t15.UD,Btu/(hr)*(ft^2)*(°F)\t478\t\t425\t\t310\t\t264\t\t219\t\t138\n\t16.UD delT,Btu/(hr)*(ft^2)\t11000\t\t9780\t\t6520\t\t5270\t\t4390\t\t3740\n");//BPR values from fig 14.34a
+//Saturate vapor pressure above the liquour determined from Table 7
+//Saturated steam pressure in the following effect determined from Table 7
+
+t1 = 274; //°F
+t2 = 147; //°F
+t = t1-t2; //°F
+printf("\tTotal temperature difference in the evaporator system = %.0f °F\n",t);
+bpr1 = 1; //°F
+bpr2 = 2; //°F
+bpr3 = 2; //°F
+bpr4 = 4; //°F
+bpr5 = 7; //°F
+bpr = bpr1 + bpr2 + bpr3 + bpr4 + bpr5; //°F
+printf("\tThe sum of all the BPR(from effect 1B to the fifth effect inclusive) = %.0f °F\n",bpr);
+tf = t-bpr; //°F
+printf("\tTotal EFFECTIVE temperature difference = %.0f °F\n",tf);
+lbh = 229000; //lb/hr
+tp1=212; //°F
+tp2=184; //°F
+tp3=144; //°F
+tp4=82; //°F
+tj1=243; //°F
+tj2=220; //°F
+tj3=200; //°F
+Ud1=231;
+Ud2=243;
+Ud3=230;
+Ud4=214;
+Ud5=217;
+printf("\n\t\t\t\tSUGAR-JUICE HEATERS\n");
+printf("\tRaw-juice heaters\t\t\t\tClear=juice heaters\n\t-----------------------------------------------------------------------------------------\n");
+rj1=lbh*(tp1-tp2)*(0.91); //Btu/hr
+printf("\t1.%.0f(%.0f-%.0f)(0.91) = %.2e Btu/hr",lbh,tp1,tp2,rj1);
+rj2=lbh*(tj1-tj2)*(0.91); //Btu/hr
+printf("\t1.%.0f(%.0f-%.0f)(0.91) = %.1e Btu/hr\n",lbh,tj1,tj2,rj2);
+printf("\tVapor temp. = 227°F\tdelT=26.6°F\t\tVapor temp. = 250°F\tdelT=15.8°F\n");
+printf("\tUD=%.0f\t\t\t\t\t\tUD=%.0f\n",Ud1,Ud2);
+A1=rj1/(26.6*Ud1);//ft^2
+A2=rj2/(15.8*Ud2);//ft^2
+printf("\tSurface,A=%.0f ft^2\t\t\t\tSurface,A=%.0f ft^2\n\n",A1,A2);
+
+rj3=lbh*(tp2-tp3)*(0.90);//Btu/hr
+printf("\t2.%.0f(%.0f-%.0f)(0.91) = %.2e Btu/hr",lbh,tp2,tp3,rj3);
+rj4=lbh*(tj2-tj3)*(0.90);//Btu/hr
+printf("\t2.%.0f(%.0f-%.0f)(0.91) = %.2e Btu/hr\n",lbh,tj2,tj3,rj4);
+printf("\tVapor temp. = 205°F\tdelT=37.6°F\t\tVapor temp. = 227°F\tdelT=14.8°F\n");
+printf("\tUD=%.0f\t\t\t\t\t\tUD=%.0f\n",Ud3,Ud4);
+A3=rj3/(37.6*Ud3);//ft^2
+A4=rj4/(14.8*Ud4);//ft^2
+printf("\tSurface,A=%.0f ft^2\t\t\t\tSurface,A=%.0f ft^2\n\n",A3,A4);
+
+rj5=lbh*(tp3-tp4)*(0.90);//Btu/hr
+printf("\t2.%.0f(%.0f-%.0f)(0.91) = %.2e Btu/hr",lbh,tp3,tp4,rj4);
+printf("\t(Use 2 heaters at 1300 ft^2 each plus 1\n\t\t\t\t\t\t\theater at 1300 ft^2 as spare)\n");
+A5=rj5/(62.2*Ud5);//ft^2
+printf("\tVapor temp. = 181°F\tdelT=62.2°F\n\tSurface,A=%.0f\n",A5);
+printf("\t(Use 3 heaters at 100 ft^2\n\teach plus 1 heater as spare)\n\n");
+
+v1=42600;//lb/hr
+tt1=251;//°F
+printf("\t\t\t\tHEAT BALANCE\n");
+printf("\tEffect\t\t\tBtu/hr\t\tEvaporation,l/hr\n");
+printf("\t----------------------------------------------------\n");
+hia=v1*929*0.97;//Btu/hr
+printf("\t1A.Heat in steam........%.2e\n",hia);
+hla=lbh*(tt1-tj1)*0.91;//Btu/hr
+hh=hia-hla;//Btu/hr
+lb1=946;//Btu/lb
+dif=hh/lb1;//lb/hr
+printf("\t Heating liquor.......%.2e\n\t\t\t\t%.3e\t%.0f\n",hla,hh,dif);
+ltob=lbh-dif;//lb/hr
+printf("\t Liqour to 1B\n\t = %.0f lb/hr\n",ltob);
+hia1=dif*929*0.97;//Btu/hr
+printf("\t1B.Heat in steam........%.2e\n",hia1);
+hla1=ltob*(tt1-tt1)*0.91;//Btu/hr
+hh1=hia1;//Btu/hr
+dif1=hh1/lb1;//lb/hr
+printf("\t Heating liquor........%.0f\n\t\t\t\t%.3e\t%.0f\n",hla1,hh1,dif1);
+dif2=ltob-dif1;//lb/hr
+printf("\t Liqour to 2d \n\t effect=%.0f lb/hr\n",dif2);
+//Similarily the values in the table are calculated
+
+printf("\t\t\t\t\t\t\t\tLb/hr\n");
+aa=179400;//lb/hr
+bb=145500;//lb/hr
+cc=19700;//lb/hr
+dd=30600;//lb/hr
+ee=17900;//lb/hr
+ff=13100;//lb/hr
+tto=aa+bb+cc+dd+ee+ff;//lb/hr
+printf("\t(a) Actual evaporation..................................%.0f\n",aa);
+printf("\t(b) Equivalent evaporation from vapors of \n\t 1st effect used for vaccum pans.....................%.0f\n",bb);
+printf("\t(c) Equivalent evaporation from 1st effect \n\t vapors used for clarified-juice heaters.............%.0f\n",cc);
+printf("\t(d) Equivalent evaporation from 2d effect \n\t vapors used for clarified-and raw-juice heaters.....%.0f\n",dd);
+printf("\t(e) Equivalent evaporation from 3d effect \n\t vapors used for raw-juice heaters...................%.0f\n",ee)
+printf("\t(f) Equivalent evaporation from 4th effect \n\t vapors used for raw-juice heaters...................%.0f\n",ff);
+printf("\t -----\n")
+printf("\t Extrapolated evaporation...........................%.0f\n",tto);
+esq=tto/5;//lb/hr
+printf("\t\tEstimated steam quantity = %.0f lb/hr\n",esq);
+aesq=80600;//lb/hr
+err = esq-aesq;//lb/hr
+printf("\t\tActual steam required from final heat balance = %.0f lb/hr\n",aesq);
+printf("\t\t\t\t\t\t\tError = %.0f lb/hr\n",err);
+ta=15;
+Q=14575000; //Btu/hr Total hourly evaporation
+Gpm=Q/(500*(t2-tp4-ta));//From equation 14.4
+printf("\tGallons per minute of Water required = %.0f gpm",Gpm);
diff --git a/1328/CH14/EX14.5/14_5.sce b/1328/CH14/EX14.5/14_5.sce
new file mode 100644
index 000000000..661d42715
--- /dev/null
+++ b/1328/CH14/EX14.5/14_5.sce
@@ -0,0 +1,88 @@
+printf("\texample 14.5\n");
+printf("\tapproximate values are mentioned in the book \n");
+st1=280; //°F
+vt6=125; //°F
+odT=st1-vt6; //°F
+printf("\tOverall temperature difference = %.0f °F\n",odT); //corresponding to 35 psig and 26 in. Hg
+bpr(1)=10; //°F
+bpr(2)=8; //°F
+bpr(3)=7; //°F
+bpr(4)=6; //°F
+bpr(5)=5; //°F
+bpr(6)=5; //°F
+i=1;
+tbpr=0;
+while(i<7)
+ tbpr=tbpr+bpr(i);
+ i=i+1;
+end
+printf("\tThe estimated total BPR = %.0f °F\n",tbpr); //from fig. 14.36a
+edT=odT-tbpr;
+printf("\tEffective temperature difference = %.0f °F\n",edT);
+printf("\n\t\t\t\tEVAPORATOR SUMMARY\n\tAll bodies will consist of 300 2 in. OD, 10 BWG tubes 24 long\n");
+printf("\t------------------------------------------------------------------------------------------------------------------------------\n");
+printf("\tItem\t\t\t\t\t\t\t\t\tEffects\n\t\t\t\t\t----------------------------------------------------------------------------------------------\n\t\t\t\t\t1A\t\t1B\t\t2\t\t3\t\t4\t\t5\n");
+printf("\t------------------------------------------------------------------------------------------------------------------------------\n");
+printf("\t1.Steam flow, lb/hr\t\t20000\n\t2.Steam pressure, psi/in.Hg\t35\t\t14.5\t\t4\t\t7\t\t16.5\t\t22\n\t3.Steam temp,°F\t\t\t280\t\t249\t\t224\t\t199\t\t174\t\t151\n\t4.delT,°F\t\t\t21\t\t17\t\t18\t\t19\t\t18\t\t21\n\t5.Liquor temp, °F\t\t259\t\t232\t\t206\t\t180\t\t156\t\t130\n\t6.BPR, °F\t\t\t10\t\t8\t\t7\t\t6\t\t5\t\t5\n\t7.Vapor temp, °F\t\t259\t\t232\t\t206\t\t180\t\t156\t\t130\n\t8.Vapor pressure, pis/in.Hg\t14.5\t\t4\t\t7\t\t6\t\t5\t\t5\n\t9.Lambda, Btu/lb\t\t946\t\t962\t\t978\t\t994\t\t1008\t\t1022\n\t10.Liquor in, lb/hr\t\t73400\t\t88300\t\t101000\t\t113000\t\t72000\t\t72000\n\t11.Liqour out, lb/hr\t\t56200\t\t73400\t\t88300\t\t101100\t\t58300\t\t54700\n\t12.Evaporation,lb/hr\t\t17200\t\t14900\t\t12800\t\t11900\t\t13700\t\t17300\n\t13.Total solids, \t\t38.9\t\t29.8\t\t24.7\t\t21.6\t\t18.7\t\t20.0\n\t14.A,ft^2\t\t\t3250\t\t3250\t\t3250\t\t3250\t\t3250\t\t3250\n\t15.UD,Btu/(hr)*(ft^2)*(°F)\t262\t\t295\t\t252\t\t251\t\t221\t\t221\n\t16.UD delT,Btu/(hr)*(ft^2)\t5510\t\t5000\t\t4530t\t\t4770\t\t3980\t\t4650\n");//BPR values from fig 14.36a
+//Specific-heat data are given in Fig. 14.36b
+ev(1)=17200; //lb/hr
+ev(2)=14900; //lb/hr
+ev(3)=12800; //lb/hr
+ev(4)=11900; //lb/hr
+ev(5)=13700; //lb/hr
+ev(6)=17300; //lb/hr
+i=1;
+tev =0;
+while(i<7)
+ tev = tev+ev(i);
+ i=i+1;
+end
+printf("\n\tTotal amount of water evaporated = %.0f lb/hr\n",tev);
+ttev=tev/6;//lb/hr
+printf("\tTheoretical amount of steam for a six-effect evaporator = %.0f lb/hr\n",ttev);
+tev2=tev/(6*0.75); //lb/hr . order of 75 percent of theoretical
+printf("\tSteam used for trail balance = %.0f lb/hr\n",tev2);
+lq=(tev/6);
+lq=lq+(lq*0.15);
+printf("\tEstimate of the amount of evaporation in the first effect = %.0f lb/hr\n",lq);
+lout6=54000;//lb/hr
+lq2=lout6+lq+2200;//lb/hr
+printf("\tEstimated discharge from second effect = %.0f lb/hr\n",lq2);
+printf("\n\t\t\t\tHEAT BALANCE\n");
+cw = 17750000/(500*(125-15-60)); //gpm, values from table 14.6
+printf("\t\tCooling water at 60 °F = %.0f gpm\n",cw);
+printf("\t--------------------------------------------------------\n");
+printf("\tEffect\t\t\tBtu/hr\t\tEvaporation,l/hr\n");
+printf("\t--------------------------------------------------------\n");
+sf=20000;//lb/hr
+lqi=73400;//lb/hr
+lqi2=88300
+lt1=259;//°F
+lt2=232;//°F
+lt3=206;//°F
+ev=17200;//lb/hr
+his=sf*924*0.97;//Btu/hr
+printf("\t1.a.Heat in steam \t%.2e\n",his);
+hl=lqi*(lt1-lt2)*0.82;//Btu/hr
+printf("\t b.Heating liquor \t%.2e\n",hl);
+hh=his-hl;
+ev1=(hh)/946;//lb/hr
+printf("\t c.Evaporation\t\t\t\t%.0f\n",ev1);
+dif=lqi-ev1;
+tft=(dif)*(lt1-209)*0.78;
+printf("\t d.To flash tank\t%.1e",tft);
+ev2=tft/978;//lb/hr
+printf("\t\t%.0f\n",ev2);
+printf("\t e.Flashed vapor=%.0f\n",ev2);
+p=dif-ev2;
+printf("\t f.product %.1e\n",p);
+printf("\n\t2.a.Heat in 1st vapors\t%.3e\n",hh);
+hl2=lqi2*(lt2-lt3)*0.85;
+printf("\t b.Heating liqour\t%.2e\n",hl2);
+ev3=(hh-hl2)/962;
+printf("\t c.Evaporation=%.0f",ev3);
+
+printf("\t\t\t%.0f\n",ev3);
+lto1=lqi2-ev3;
+printf("\t d.Liquor to 1b=%.0f\n",lto1);
+//end
diff --git a/1328/CH14/EX14.6/14_6.sce b/1328/CH14/EX14.6/14_6.sce
new file mode 100644
index 000000000..ef420e9af
--- /dev/null
+++ b/1328/CH14/EX14.6/14_6.sce
@@ -0,0 +1,84 @@
+printf("\texample 14.6\n");
+printf("\tapproximate values are mentioned in the book \n");
+st1=274; //°F
+vt6=115; //°F
+odT=st1-vt6; //°F
+printf("\tTotal temperature difference = %.0f °F\n",odT); //corresponding to 35 psig
+eb1=77;//°F, From fig.14.38
+eb2=26;//°F, From fig.14.38
+etd=odT-(eb1+eb2);//°F
+printf("\tThe effective temperature difference is %.0f °F\n",etd);
+printf("\n\t\t\tCAUSTIC EVAPORATOR MATERIAL BALANCE\n");
+//Basis: 1 ton/hr NaOH
+printf("\tCell liquour at 120°F \t\tWash at 80°F\n");
+printf("\t---------------------------------------------\n");
+l1=2000;//Lb
+l2=3800;//Lb
+l3=17050;//Lb
+lq=l1+l2+l3;//Lb
+w1=340;//Lb
+w2=1020;//Lb
+w=w1+w2;//Lb
+printf("\t8.75 prcnt NaOH = %.0f\n\t16.6 prcnt NaCl = %.0f\t\t25 prcnt NaCl = %.0f\n",l1,l2,w1);
+printf("\t74.65 prcnt H20 = %.0f\t\t75 prcnt H20 = %.0f\n",l3,w2);
+printf("\tTotal cell liquor = %.0f\tTotoal wash = %.0f\n",lq,w);
+printf("\n\t-------------------------------------------------------------------------\n");
+printf("\t\t\t\tNaOH\t\tNaCl\t\tH20,Lb\tTotal,Lb\n\t\t\t\tprcnt\tLb\tprcnt\tLb\n");
+printf("\t-------------------------------------------------------------------------\n");
+printf("\tOverall operation:\n\t Cell liquor.......... 8.75\t"+string(l1)+"\t16.60\t"+string(l2)+"\t"+string(l3)+"\t"+string(lq)+"\n");
+printf("\t Wash................. ....\t....\t25.00\t"+string(w1)+"\t"+string(w2)+"\t"+string(w)+"\n");
+wl1=l2+w1;//Lb
+wl2=l3+w2;//Lb
+wlt=lq+w;
+printf("\t Total in............. ....\t"+string(l1)+"\t....\t"+string(wl1)+"\t"+string(wl2)+"\t"+string(wlt)+"\n");
+prn=110;//Lb
+prh=1890;//Lb
+prt=4000;//Lb
+printf("\t Product.............. 50.00\t"+string(l1)+"\t2.75\t"+string(prn)+"\t"+string(prh)+"\t"+string(prt)+"\n");
+r1=wl1-prn;//Lb
+r2=wl2-prh;//Lb
+r3=wlt-prt;//Lb
+gain=3200;//gpm
+printf("\t Removed.............. ....\t....\t....\t%.0f\t%.0f\t%.0f\n",r1,r2,r3);
+//Rest of the table is calculated similarily
+printf("\n\t\t\t\t\tCAUSTIC EVAPORATOR SUMMARY\n");
+printf("\t------------------------------------------------------------------------------------\n");
+printf("\tItem\t\t\t\t\tEffects\nt\t\t\t\t\t--------------------\t\tFlash Tank\n\t\t\t\t\t\I\t\tII\n");
+printf("\t------------------------------------------------------------------------------------\n");
+printf("\t1.Steam pressure, psi/in.Hg\t30\n\t2.Steam temperature,°F\t\t274\t\t169\n\t3.delT,°F\t\t\t28\t\t28\n\t4.Liquor temperature, °F\t246\t\t141\t\t192\n\t5.BPR, °F\t\t\t77\t\t26\t\t77\n\t6.Vapor temperature, °F\t\t169\t\t115\t\t115\n\t7.Lambda, Btu/lb\t\t997\t\t1027\t\t1027\n\t8.Feed, lb/hr\t\t\t22788\t\t50602\t\t13367\n\t9.Product, lb/hr\t\t13367\t\t40352\t\t12813\n\t10.Evaporation,lb/hr\t\t9421\t\t10250\t\t554\n\t11.Heat flow, Btu/hr\t\t11890000\t11020000\n\t12.UD,Btu/((hr)*(ft^2)*(°F))\t700\n\t13.A,ft^2\t\t\t683\t\t683\n\t14.Tubes, OD, in. and BWG\t1,16\t\t1,16\n\t15.Tube length, ft\t\t7\t\t7\n\t16.No. tubes\t\t\t432\t\t432\n\t17.Circulating pump. gpm\t3200 at 20 ft\t3200 at 20ft\t167 at 45 ft\n\t18.Apparent efficiency, prcnt\t54\t\t64\n\t18.BHP\t\t\t\t38\t\t35\t\t8.2\n\t20.Motor,hp\t\t\t40\t\t40\t\t10.0\n");
+printf("\t------------------------------------------------------------------------------------\n");
+V=8;
+s=1.5;
+G=V*s*62.5*3600;//lb/((hr)*(ft^2))
+printf("\tG = V(s*62.5*3600) = %.1e lb/((hr)*(ft^2))\n",G);
+UD=700;//Btu/((hr)*(ft^2)*(°F))
+//Combining with a steam film coefficient of approximately 1500
+printf("\tUC or UD = %.0f Btu/((hr)*(ft^2)*(°F))\n",UD);
+printf("\n\t-------------------------------------------------------------------------------------");
+printf("\n\ttx,°F\tw,lb/hr\t\tdelT\tUC\tA,ft^2\tat,flow area\tGcalc\t\tUcalc\n\t\t\t\t\t\t\tper pass, ft^2\n");
+printf("\t-------------------------------------------------------------------------------------\n");
+printf("\t251\t2970000\t\t25.4\t700\t670\t0.87\t\t3420000\n\t252\t2480000\t\t25.0\t700\t680\t0.88\t\t2820000\n\t252.5\t2290000\t\t24.7\t700\t685\t0.89\t\t2570000\t\t700\n\t253\t2120000\t\t24.5\t700\t695\t0.90\t\t2520000\n");
+printf("\tThee gain per minute is %.0f gpm\n",gain);
+printf("\n\t\t\t\tCAUSTIC EVAPORATION HEAT BALANCE\n");
+printf("\t\t\t\t(Basis = 1ton/hr NaOH)\n");
+printf("\t-------------------------------------------------------------------------------------\n");
+printf("\t\tEFFECT\t\t\tBtu/hr\t\tEvaopration, lb/hr\n");
+hi=10500*930*0.974;//Btu/hr
+hl=18230*(246-150)*0.83;//Btu/hr
+rh=hi-hl;//Btu/hr
+hc=300000;//Btu/hr
+hv=rh-hc;//Btu/hr
+evv=hv/997;//lb/hr
+printf("\t1.a.Heat in steam\t\t%.1e\n\t b.Heating liquor\t\t%.2e\n\t c.Resultant heat\t\t%.2ef\n\t d.Heat of concentrate\t\t%.0e\n\t e.Heat of vapors\t\t%.2e\t%.0f\n",hi,hl,rh,hc,hv,evv);
+s1=1.35;
+G1=V*s1*62.5*3600;//lb/((hr)*(ft^2))
+printf("\n\tG = V(s*62.5*3600) = %.2e lb/((hr)*(ft^2))\n",G1);
+UD1=700;//Btu/((hr)*(ft^2)*(°F))
+//Using thermal characteristics for this solution
+printf("\tUD = %.0f Btu/((hr)*(ft^2)*(°F))\n",UD1);
+//As for effect I:
+printf("\n\t-------------------------------------------------------------------------------------");
+printf("\n\ttx,°F\tw,lb/hr\t\tdelT\tUC\tA,ft^2\tat,flow area\tGcalc\t\tUcalc\n\t\t\t\t\t\t\tper pass, ft^2\n");
+printf("\t-------------------------------------------------------------------------------------\n");
+printf("\t146\t2400000\t\t25.4\t700\t620\t0.80\t\t2790000\t\t700\n\t146.5\t2160000\t\t25.2\t700\t683\t0.89\t\t2430000\n");
+//end
diff --git a/1328/CH14/EX14.7/14_7.sce b/1328/CH14/EX14.7/14_7.sce
new file mode 100644
index 000000000..495b40714
--- /dev/null
+++ b/1328/CH14/EX14.7/14_7.sce
@@ -0,0 +1,25 @@
+printf("\texample 14.7\n");
+printf("\tapproximate values are mentioned in the book \n");
+M2=14300;//From fig.14.43 and heat balance above
+M1=32200-14300;//From fig.14.43 and heat balance above
+printf("\tM1 = %.0f lb\n",M1);
+printf("\n\t\t\t\tEVAPORATOR SUMMARY\n");
+printf("\t------------------------------------------------------------------------------------------------------------------------------\n");
+printf("\tEffects\t\t\t\t\tStraight triple effect\t\t\t\tThermocompression\nt\t\t\t\t\t----------------------------------------------------------------------------------------------\n\t\t\t\t\t1\t\t2\t\t3\t\t1\t\t2\t\t3\n");
+printf("\t------------------------------------------------------------------------------------------------------------------------------\n");
+printf("\tSteam flow, lb/hr\t\t22400\t\t\t\t\t\t17900\n\tSteam pressure, psi in.Hg\t20\t\t9\t\t2\t\t20\t\t9\t\t2\n\tSteam temp,°F\t\t\t258\t\t237\t\t217\t\t258\t\t237\t\t217\n\ttdelT,°F\t\t\t20\t\t18\t\t22\t\t20\t\t18\t\t22\n\tLiquor temp, °F\t\t\t238\t\t219\t\t195\t\t238\t\t219\t\t195\n\tBPR, °F\t\t\t\t1\t\t2\t\t3\t\t1\t\t2\t\t3\n\tVapor temp, °F\t\t\t237\t\t217\t\t192\t\t237\t\t215\t\t192\n\tVapor pressure, pis/in.Hg\t9\t\t2\t\t10\t\t9\t\t2\t\t10\n\tLambda, Btu/lb\t\t\t954\t\t965\t\t983\t\t954\t\t965\t\t983\n\tLiquor in, lb/hr\t\t100000\t\t79400\t\t56900\t\t109000\t\t70000\t\t52400\n\tLiqour out, lb/hr\t\t79400\t\t56900\t\t33300\t\t70000\t\t52400\t\t33300\n\tEvaporation,lb/hr\t\t20600\t\t22500\t\t23500\t\t30000\t\t17600\t\t19100\n\t°Brix(out)\t\t\t\t\t\t\t\t\t\t\t\t\t30\n\tCondenser water, gpm\t\t\t\t455\t\t\t\t\t\t365\n");
+printf("\n\t\t\t\tHEAT BALANCE-STRAIGHT TRIPLE EFFECT\n\t\t\t\tCondenser water = 455 gpm\n");
+printf("\t--------------------------------------------------------\n");
+printf("\tEffect\t\t\tBtu/hr\t\tEvaporation,l/hr\n");
+printf("\t--------------------------------------------------------\n");
+sf=22400;//lb/hr
+lc=100000;//lb/hr
+t1=238;//°F
+t2=230;//°F
+his=sf*940*0.97;//Btu/hr
+hlq=lc*(t1-t2)*0.92;//Btu/hr
+hd=his-hlq;//Btu/hr
+eva=(hd)/954;//lb/hr
+l2d=lc-eva;
+printf("\t1.a.Heat in steam\t%.2e\n\t b.Heating liquor\t%.2e\n\t c.Evaporation\t\t%.4e/954\t%.0f\n\t d.Liquor to 2d = %.0f",his,hlq,hd,eva,l2d);
+//end