diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1309/CH4 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1309/CH4')
21 files changed, 446 insertions, 0 deletions
diff --git a/1309/CH4/EX4.1/Result4_1.pdf b/1309/CH4/EX4.1/Result4_1.pdf Binary files differnew file mode 100755 index 000000000..4f011f37a --- /dev/null +++ b/1309/CH4/EX4.1/Result4_1.pdf diff --git a/1309/CH4/EX4.1/ch4_1.sce b/1309/CH4/EX4.1/ch4_1.sce new file mode 100755 index 000000000..8205a1f31 --- /dev/null +++ b/1309/CH4/EX4.1/ch4_1.sce @@ -0,0 +1,19 @@ +clc; +clear; +printf("\t\t\tChapter4_example1\n\n\n"); +// determination of response time +k=12; // thermal conductivity in BTU/(hr.ft.degree Rankine) +c=0.1; // specific heat in BTU/(lbm.degree Rankine) +D=0.025/12; // diameter in ft +density=525; // density in lbm/cu.ft +hc=80; // convective coefficient in BTU/(hr. sq.ft. degree Rankine) +T_i=65; // intial temperature in degree fahrenheit +T_inf=140; // fluid temperature in degree fahrenheit +As=3.14*D^2; // surface area in sq.ft +Vs=3.14*D^3/6; // volume in cu.ft +reciprocal_timeconstant=(hc*As)/(density*Vs*c); +printf("\nThe reciprocal of time constant is %.1f /hr",reciprocal_timeconstant); +// selecting T=139 degree fahrenheit as T=140 gives an infinite time through the equation (T-T_inf)/(T_i-T_inf)=exp(-hc*As/density*Vs*c)t +T=139; +t=log((T-T_inf)/(T_i-T_inf))/(-reciprocal_timeconstant); +printf('\n\nThe response time of the junction is %.1f s",t*3600); diff --git a/1309/CH4/EX4.10/Result4_10.pdf b/1309/CH4/EX4.10/Result4_10.pdf Binary files differnew file mode 100755 index 000000000..0fdfaf9cd --- /dev/null +++ b/1309/CH4/EX4.10/Result4_10.pdf diff --git a/1309/CH4/EX4.10/ch4_10.sce b/1309/CH4/EX4.10/ch4_10.sce new file mode 100755 index 000000000..280a1dafc --- /dev/null +++ b/1309/CH4/EX4.10/ch4_10.sce @@ -0,0 +1,17 @@ +clc; +clear; +printf("\t\t\tChapter4_example10\n\n\n"); +// determination of time required to cool to a certain temperature +rou=7.817*62.4; +c=.110; +k=8.32; +alpha=0.417e-4; +dx=1/12; +// taking Fo=1 +Fo=1; +dt=Fo*dx^2/alpha; +printf("\nThe time increments is %.1f s",dt); +// We have to draw the Saul'ev plot to determine the number of time intervals +n=8; //Enter the number of time intervals from Saulev plot +time=n*dt; +printf("\nThe required time is %.2f hr",time/3600); diff --git a/1309/CH4/EX4.2/ch4_2.sce b/1309/CH4/EX4.2/ch4_2.sce new file mode 100755 index 000000000..7b85c7fdb --- /dev/null +++ b/1309/CH4/EX4.2/ch4_2.sce @@ -0,0 +1,28 @@ +clc; +clear; +printf("\t\t\tChapter4_example2\n\n\n"); +// Determination of temperature of metal and cumulative heat rate +// properties of aluminium from appendix table B1 +k=236; // thermal conductivity in W/(m.K) +Cp=896;// specific heat in J/(kg.K) +sp_gr=2.702; // specific gravity +density=2702; // density in kg/cu.m +D=0.05; // Diameter in m +L=0.60; // length in m +hc=550; // unit surface conductance between the metal and the bath in W/(K.sq.m) +Vs=(3.14*D^2*L)/4; // Volume in cu.m +As=(2*3.14*D^2/4)+(3.14*D*L); // surface area in sq.m +printf("\n\nThe volume of cylinder is %.5f cu.m",Vs); +printf("\n\nThe surface area of cylinder is %.3f sq.m",As); +Bi=(hc*Vs)/(k*As); // Biot Number +printf("\n\nThe Biot number is %.3f",Bi); +// Biot number is less than 1 hence lump capacitance equations apply +printf("\n\n\t\t\tSolution to part (a)\n"); +T_i=50; // initial temperature in degree celsius +T_inf=2; // temperature of ice water bath in degree celsius +t=60; // time=1 minute=60 s +T=T_inf+(T_i-T_inf)*exp(-(hc*As)/(density*Vs*Cp)*t); +printf("\nThe temperature of aluminium is %.1f degree celsius",T); +printf("\n\n\t\t\tSolution to part (b)\n"); +Q=density*Vs*Cp*(T_inf-T_i)*[1-exp(-(hc*As)/(density*Vs*Cp)*t)]; +printf("\nThe cumulative heat transferred is %d J =%.1f kJ",abs(Q),abs(-Q/1000)); diff --git a/1309/CH4/EX4.3/Figure4_3.jpeg b/1309/CH4/EX4.3/Figure4_3.jpeg Binary files differnew file mode 100755 index 000000000..ff1b509de --- /dev/null +++ b/1309/CH4/EX4.3/Figure4_3.jpeg diff --git a/1309/CH4/EX4.3/Result4_3.pdf b/1309/CH4/EX4.3/Result4_3.pdf Binary files differnew file mode 100755 index 000000000..2f20eac4b --- /dev/null +++ b/1309/CH4/EX4.3/Result4_3.pdf diff --git a/1309/CH4/EX4.3/ch4_3.sce b/1309/CH4/EX4.3/ch4_3.sce new file mode 100755 index 000000000..b78cb8e36 --- /dev/null +++ b/1309/CH4/EX4.3/ch4_3.sce @@ -0,0 +1,82 @@ +clc;
+clear;
+printf("\t\t\tChapter4_example3\n\n\n");
+hc=30;
+L=0.24;
+k=1.25;
+c=890;
+rou=550;
+Bi=hc*L/k;
+alpha=k/(rou*c);
+printf("The value of diffusivity is %.2e sq.m/s",alpha);
+Tc=150;
+T_inf=600;
+T_i=50;
+printf("\nThe Biot number is %.2f,",Bi);
+if Bi<0.1 then
+ n=0;
+else if Bi>0.1 then
+ n=1;
+ end
+end
+select n
+case 0 then
+ disp('The Lumped capacity approach is applicable');
+case 1 then
+ disp('Since value of Biot number is greater than 0.1, Lumped capacity approach would not give accurate results, so figure 4.6 is to be used');
+ reciprocal_Bi=1/Bi;
+ dimensionless_temp=(Tc-T_inf)/(T_i-T_inf);
+ Fo=0.4; //the value of Fourier Number from figure 4.6(a)
+ t=L^2*Fo/alpha;
+ printf("The required time is %d s = %.1f hr",t,t/3600);
+end
+// reading values of dimensionless temperature from figure 4.6(b) using reciprocal of Biot number
+x_per_L=[0 0.2 0.4 0.6 0.8 0.9 1.0];
+[n,m]=size(x_per_L);
+printf("\nThe choosen values of x/L are: \n");
+disp(x_per_L);
+printf("\n Values for dimensionless temperature for corresponding values of x/L:")
+dim_T=[1.0 .97 .86 .68 .48 .36 .24]; // value for dimensionless temperature for corresponding value of x/L
+disp(dim_T);
+printf("the temperature profile with distance is\n");
+printf("\tx/L\t\t");
+for j=1:m
+ printf("%.2f\t",x_per_L(1,j));
+
+end
+printf("\n");
+printf("(T-T_inf)/T_i-T_inf)\t");
+for i=1:m
+ printf("%.2f\t",dim_T(i));
+end
+T=zeros(1,m);
+x=zeros(1,m);
+for i=1:m
+ T(1,i)=dim_T(1,i)*dimensionless_temp*(T_i-T_inf)+T_inf;
+ x(1,i)=x_per_L(1,i)*L;
+end
+printf("\n\tx,cm\t\t");
+for i=1:m
+ X(1,i)=x(1,i)*100;
+ printf("%.1f\t",X(1,i));
+end
+printf("\nT, degree celsius\t");
+for i=1:m
+ printf("%d\t",T(1,i));
+end
+plot2d(X,T,rect=[0,0,24,600]);
+a=gca();
+newticks=a.x_ticks;
+newticks(2)=[0;4;8;12;16;20;24];
+newticks(3)=['0';'4';'8';'12';'16';'20';'24'];
+a.x_ticks=newticks;
+newticks1=a.y_ticks;
+newticks1(2)=[0;100;200;300;400;500;600];
+newticks1(3)=['0';'100';'200';'300';'400';'500';'600'];
+a.y_ticks=newticks1;
+xlabel('x,cm');
+ylabel('t,degree celsius');
+title('Temperature profile in the 24-cm slab after 2.5 hr.');
+filename='Temperature profile in the 24-cm slab after 2.5 hr.';
+xgrid(1);
+xs2jpg(0,filename);
diff --git a/1309/CH4/EX4.4/Result4_4.pdf b/1309/CH4/EX4.4/Result4_4.pdf Binary files differnew file mode 100755 index 000000000..0a465b779 --- /dev/null +++ b/1309/CH4/EX4.4/Result4_4.pdf diff --git a/1309/CH4/EX4.4/ch4_4.sce b/1309/CH4/EX4.4/ch4_4.sce new file mode 100755 index 000000000..5e73af129 --- /dev/null +++ b/1309/CH4/EX4.4/ch4_4.sce @@ -0,0 +1,44 @@ +clc; +clear; +printf("\t\t\tChapter4_example4\n\n\n"); +hc=6; +D=0.105; +k=0.431; +c=2000; +rou=998; +Vs=%pi*D^3/6; +As=%pi*D^2; +// calculating Biot Number for lumped capacitance approach +Bi_lumped=hc*Vs/(k*As); +printf("\nThe Biot number is %.3f,",Bi_lumped); +alpha=k/(rou*c); +printf("\nThe value of diffusivity is %.2e sq.m/s",alpha); +Tc=20; +T_inf=23; +T_i=4; +if Bi_lumped<0.1 then + n=0; +else if Bi_lumped>0.1 then + n=1; + end +end +select n +case 0 then + disp('The Lumped capacity approach is applicable'); +case 1 then + printf("\n\nSince value of Biot number is greater than 0.1,\nLumped capacity approach would not give accurate results, so figure 4.8 is to be used\n"); + // calculating Biot Number for using figure 4.8 + Bi_figure=hc*D/(2*k); + printf("\nThe Biot Number for using figure 4.8 is %.3f",Bi_figure); + reciprocal_Bi=1/Bi_figure; + dimensionless_temp=(Tc-T_inf)/(T_i-T_inf); + printf("\nThe dimensionless temperature is %.3f",dimensionless_temp); + Fo=1.05;//The corresponding value of Fourier Number from figure 4.8a + t=(D/2)^2*Fo/alpha; + printf("\nThe required time is %.2e s = %.1f hr",t,t/3600); +end +Bi2Fo=Bi_figure^2*Fo; +printf("\nBi^2Fo=%.1e",Bi2Fo); +Dimensionless_HeatFlow=0.7; // The corresponding dimensionless heat flow ratio from figure 4.8c +Q=Dimensionless_HeatFlow*rou*c*Vs*(T_i-T_inf); +printf("\nThe heat transferred is %.3e J",Q); diff --git a/1309/CH4/EX4.5/Result4_5.pdf b/1309/CH4/EX4.5/Result4_5.pdf Binary files differnew file mode 100755 index 000000000..861926659 --- /dev/null +++ b/1309/CH4/EX4.5/Result4_5.pdf diff --git a/1309/CH4/EX4.5/ch4_5.sce b/1309/CH4/EX4.5/ch4_5.sce new file mode 100755 index 000000000..884c7e043 --- /dev/null +++ b/1309/CH4/EX4.5/ch4_5.sce @@ -0,0 +1,23 @@ +clc; +clear; +printf("\t\t\tChapter4_example5\n\n\n"); +hc=6; +D=0.105; +k=0.3; +c=0.41; +sp_gr=2.1; +rou_water=62.4; +alpha=k/(sp_gr*rou_water*c); +printf("\nThe diffusivity of the soil is %.2e sq.ft/hr",alpha); +t=3*30*24; +printf("\nTime in hours is %d hr",t); +// Bi_sqrt(Fo) is infinite +T_inf=10; +Ts=10; +T=32; +T_i=70; +dimensionless_temp=(T-T_i)/(T_inf-T_i); +printf("\nThe dimensionless temperature is %.4f",dimensionless_temp); +variable_fig4_12=0.38; //The value of x/(2*(alpha*t)^0.5) from figure 4.12 +x=2*sqrt(alpha*t)*variable_fig4_12; +printf("\nThe depth of the freeze line in soil is %.2f ft",x); diff --git a/1309/CH4/EX4.6/Result4_6.pdf b/1309/CH4/EX4.6/Result4_6.pdf Binary files differnew file mode 100755 index 000000000..4f1b2c15d --- /dev/null +++ b/1309/CH4/EX4.6/Result4_6.pdf diff --git a/1309/CH4/EX4.6/ch4_6.sce b/1309/CH4/EX4.6/ch4_6.sce new file mode 100755 index 000000000..f4d48765a --- /dev/null +++ b/1309/CH4/EX4.6/ch4_6.sce @@ -0,0 +1,29 @@ +clc; +clear; +printf("\t\t\tChapter4_example6\n\n\n"); +// properties of aluminium from appendix table B1 +k_al=236; +p_al=2.7*1000; +c_al=896; +// properties of oak from appendix table B3 +k_oak=0.19; +p_oak=0.705*1000; +c_oak=2390; +sqrt_kpc_al=sqrt(k_al*p_al*c_al); +printf("\nThe square root of kpc product of aluminium is %.2e sq.W.s/(m^4.sq.K)",sqrt_kpc_al); +kpc_R=4; +T_Li=20; +T_Ri=37.3; +T_al=(T_Li*(sqrt_kpc_al)+T_Ri*sqrt(kpc_R))/(sqrt_kpc_al+sqrt(kpc_R)); +printf("\nThe temperature of aluminium is felt as %.1f degree celsius",T_al); +sqrt_kpc_oak=sqrt(k_oak*p_oak*c_oak); +printf("\nThe square root of kpc product of oak is %.2e sq.W.s/(m^4.sq.K)",sqrt_kpc_oak); +T_oak=(T_Li*(sqrt_kpc_oak)+T_Ri*sqrt(kpc_R))/(sqrt_kpc_oak+sqrt(kpc_R)); +printf("\nThe temperature of oak is felt as %.1f degree celsius",T_oak); +if (T_al>T_oak) then + printf("\nThe aluminium will feel warmer."); +elseif (T_al<T_oak) then + printf("\nThe oak will feel warmer."); +else + printf("\nBoth will be felt equally warm.") +end diff --git a/1309/CH4/EX4.7/Result4_7.pdf b/1309/CH4/EX4.7/Result4_7.pdf Binary files differnew file mode 100755 index 000000000..e57a8bc95 --- /dev/null +++ b/1309/CH4/EX4.7/Result4_7.pdf diff --git a/1309/CH4/EX4.7/ch4_7.sce b/1309/CH4/EX4.7/ch4_7.sce new file mode 100755 index 000000000..99d2b30c3 --- /dev/null +++ b/1309/CH4/EX4.7/ch4_7.sce @@ -0,0 +1,50 @@ +clc; +clear; +printf("\t\t\tChapter4_example7\n\n\n"); +// properties of water at 68 degree fahrenheit from appendix table C11 +rou=62.46; +cp=0.9988; +k=0.345; +alpha=k/(rou*cp); +printf("\nThe diffusivity at 68 degree fahrenheit is %.2e sq.ft/hr",alpha); +D=2.5/12; +L=4.75/12; +Vs=%pi*D^2*L/4; +As=(%pi*D*L)+(%pi*D^2)/2; +Lc=Vs/As; +printf("\nThe volume of the can is %.4f cu.ft",Vs); +printf("\nThe surface area of the can is %.3f sq.ft",As); +printf("\nThe characteristic length is %.3f ft",Lc); +hc=1.7; +Bi=hc*Lc/k; +printf("\nThe Biot number is %.3f",Bi); +t=4; +// for the cylinder solution +Fo_cylinder=alpha*t/(D/2)^2; +Bi_cylinder=hc*(D/2)/k; +printf("\nFor the cylinder, The Fourier number is %.2f and Biot Number is %.3f",Fo_cylinder,Bi_cylinder); +reciprocal_Bi_cylinder=1/Bi_cylinder; +printf("\nThe reciprocal for Biot number for cylinder is %.2f",reciprocal_Bi_cylinder); +dim_T_cylinder=0.175; //The value of dimensionless temperature of cylinder from figure 4.7a at corresponding values of Fo and 1/Bi +// for the infinite plate solution +Fo_plate=alpha*t/(L/2)^2; +Bi_plate=hc*L/(2*k); +printf("\nFor the infinite plate, The Fourier number is %.3f and Biot Number is %.2f",Fo_plate,Bi_plate); +reciprocal_Bi_plate=1/Bi_plate; +printf("\nThe reciprocal for Biot number for infinite plate is %.2f",reciprocal_Bi_plate); +dim_T_plate=0.55; //The value of dimensionless temperature of infinite plate from figure 4.7a at corresponding values of Fo and 1/Bi +// Table 4. I, for the short-cylinder problem, indicates that the solution is the product of the infinite-cylinder problem (Figure 4.7) and the infinite-plate problem (Figure 4.6). +// For short cylinder problem +dim_T_shortcylinder=dim_T_cylinder*dim_T_plate; +printf("\nThe value of dimensionless temperature for short cylinder is %.3f ",dim_T_shortcylinder); +T_inf=30; +T_i=72; +Tc=dim_T_shortcylinder*(T_i-T_inf)+T_inf; +printf("\nThe temperature at centre of can is %.1f degree celsius",Tc); +dim_Tw_cylinder=0.77; //The dimensionless temperature from figure 4.7b corresponding to the value of 1/Bi and r/R=1 +dim_Tw_plate=0.65; //The dimensionless temperature from figure 4.6b corresponding to the value of 1/Bi and x/L=1 +dim_Tw_shortcylinder=dim_Tw_cylinder*dim_Tw_plate; +printf("\nThe value of dimensionless temperature at the wall for short cylinder is %.2f ",dim_Tw_shortcylinder); +Tw=dim_Tw_shortcylinder*(Tc-T_inf)+T_inf; +printf("\nThe wall temperature is %.1f degree F",Tw); + diff --git a/1309/CH4/EX4.8/Result4_8.pdf b/1309/CH4/EX4.8/Result4_8.pdf Binary files differnew file mode 100755 index 000000000..b57cf729b --- /dev/null +++ b/1309/CH4/EX4.8/Result4_8.pdf diff --git a/1309/CH4/EX4.8/ch4_8.sce b/1309/CH4/EX4.8/ch4_8.sce new file mode 100755 index 000000000..827efcbc4 --- /dev/null +++ b/1309/CH4/EX4.8/ch4_8.sce @@ -0,0 +1,39 @@ +clc; +clear; +printf("\t\t\tChapter4_example8\n\n\n"); +rou=7817; +c=461; +k=14.4; +alpha=.387e-5; +L1=.03; +L2=0.03; +L3=0.04; +x=0.04; +T_i=95; +T_inf=17; +// for infinite plate +L=L1/2; +hc=50; +reciprocal_Bi_plate=k/(hc*L); +printf("\nThe value of 1/Bi for infinite plate is %.1f",reciprocal_Bi_plate); +T=50; +n=1; +t=[3000 1500 700 400 200 300 350]; +[n m]=size(t); +// parameter for infinite plate Fourier Number,Fo is named as parameter1 +for i=1:m + parameter1(i)=alpha*t(i)/L^2; +// parameters for semi-infinite solid Bi(Fo)^0.5 and x/(2*(alpha*t)^0.5) are named as parameter2 and parameter3 +parameter2(i)=hc*((alpha*t(i))^0.5)/k; +parameter3(i)=x/(2*(alpha*t(i))^0.5); +dim_T_plate=[0.085 0.34 0.55 0.7 0.8 0.8 0.7]; //the corresponding values of dimensionless temperature for infinite plate from figure 4.6a +dim_T_solid=[0.225 0.14 0.075 0.046 0.02 0.035 0.042]; // the corresponding values of dimensionless temperature for semi-infinite solid from figure 4.12 +dim_T_bar(i)=dim_T_plate(i)*dim_T_plate(i)*(1-dim_T_solid(i)); +T(i)=dim_T_plate(i)*dim_T_plate(i)*(1-dim_T_solid(i))*(T_i-T_inf)+T_inf; +end +printf("\nThe Results for different time instances:\n"); +printf("\n\tInfinite Plate\t\t\t\t\t\tSemi-Infinite Solid\t\t\t\tDimensionless Temperature\tTemperature"); +printf("\ntime t, s\t1/Bi\tFo\t(T-Tinf)/(Ti-Tinf)\tBi(Fo)^0.5\tx/(2*(at)^0.5)\t(T-Tinf)/(Ti-Tinf)\t(T-Tinf)/(Ti-Tinf)\t\tT"); +for i=1:m + printf("\n%d\t\t%.1f\t%.2f\t\t%.2f\t\t%.3f\t\t%.3f\t\t%.3f\t\t\t%.3f\t\t\t\t%.1f",t(i),reciprocal_Bi_plate,parameter1(i),dim_T_plate(i),parameter2(i),parameter3(i),dim_T_solid(i),dim_T_bar(i),T(i)); +end diff --git a/1309/CH4/EX4.9/Figure4_9.jpg b/1309/CH4/EX4.9/Figure4_9.jpg Binary files differnew file mode 100755 index 000000000..6bfaacbad --- /dev/null +++ b/1309/CH4/EX4.9/Figure4_9.jpg diff --git a/1309/CH4/EX4.9/Result4_9.pdf b/1309/CH4/EX4.9/Result4_9.pdf Binary files differnew file mode 100755 index 000000000..edc3b0b27 --- /dev/null +++ b/1309/CH4/EX4.9/Result4_9.pdf diff --git a/1309/CH4/EX4.9/ch4_9.sce b/1309/CH4/EX4.9/ch4_9.sce new file mode 100755 index 000000000..f10032d86 --- /dev/null +++ b/1309/CH4/EX4.9/ch4_9.sce @@ -0,0 +1,115 @@ +clc; +clear; +printf("\t\t\tChapter4_example9\n\n\n"); +rou=.5*1000; +cp=837; +k=0.128; +alpha=0.049e-5; +// let Fo=0.5 and dx=0.05 +dt=0.5*(0.05)^2/alpha; +printf("\nThe time increment is %.3f hr",dt/3600); +p=1; +m=6; +A=2*eye(6,6); +n=1; +N=1; +for j=1:n + for i=1:6 + T(i,j)=20; + end +end +for n=1:7 + for i=1:4 + B(i+1,n)=T(i+2,n)+T(i,n); + B(1,n)=T(i+1,n)+200; + B(6,n)=2*T(i+1,n); + end +Temp=inv(A)*B(:,n); // temperature at the different points +printf("\nThe temperature at different points after %d time interval are:",n); +T(:,n+1)=Temp; +disp(T(:,n+1)); +end +time=n*dt; +printf("\nThe required time is %.2f hr",time/3600); +x=0:5:30; +plot(x,[200;T(:,2)]); +a1=gca(); +a1.data_bounds=[0,0;30,200]; +xtitle('(a) After 0.709 hr','T degree C','x, cm'); +newticks=a1.x_ticks; +newticks(2)=[0;10;20;30]; +newticks(3)=['0';'10';'20';'30']; +a1.x_ticks=newticks; +newticks1=a1.y_ticks; +newticks1(2)=[0;50;100;150;200]; +newticks1(3)=['0';'50';'100';'150';'200']; +a1.y_ticks=newticks1; +plot(x,[200;T(:,3)]); +a2=gca(); +hl=legend(['After 2(0.709) hr ';'After (0.709) hr ']); +a2.data_bounds=[0,0;30,200]; +xtitle('(b) After 2(0.709) hr ','T degree C','x, cm'); +newticks=a2.x_ticks; +newticks(2)=[0;10;20;30]; +newticks(3)=['0';'10';'20';'30']; +a2.x_ticks=newticks; +newticks1=a2.y_ticks; +newticks1(2)=[0;50;100;150;200]; +newticks1(3)=['0';'50';'100';'150';'200']; +a2.y_ticks=newticks1; +filename='(b) After 2(0.709) hr '; +clf(); +plot(x,[200;T(:,4)],x,[200;T(:,3)]); +a3=gca(); +hl=legend(['After 3(0.709) hr ';'After 2(0.709) hr ']); +a3.data_bounds=[0,0;30,200]; +xtitle('(c) After 3(0.709) hr ','T degree C','x, cm'); +newticks=a3.x_ticks; +newticks(2)=[0;10;20;30]; +newticks(3)=['0';'10';'20';'30']; +a3.x_ticks=newticks; +newticks1=a3.y_ticks; +newticks1(2)=[0;50;100;150;200]; +newticks1(3)=['0';'50';'100';'150';'200']; +a3.y_ticks=newticks1; +clf(); +plot(x,[200;T(:,5)],x,[200;T(:,4)]); +a4=gca(); +hl=legend(['After 4(0.709) hr ';'After 3(0.709) hr ']); +a4.data_bounds=[0,0;30,200]; +xtitle('(d) After 4(0.709) hr ','T degree C','x, cm'); +newticks=a4.x_ticks; +newticks(2)=[0;10;20;30]; +newticks(3)=['0';'10';'20';'30']; +a4.x_ticks=newticks; +newticks1=a4.y_ticks; +newticks1(2)=[0;50;100;150;200]; +newticks1(3)=['0';'50';'100';'150';'200']; +a4.y_ticks=newticks1; +clf(); +plot(x,[200;T(:,6)],x,[200;T(:,5)]); +a5=gca(); +hl=legend(['After 5(0.709) hr ';'After 4(0.709) hr ']); +a5.data_bounds=[0,0;30,200]; +xtitle('(e) After 5(0.709) hr ','T degree C','x, cm'); +newticks=a5.x_ticks; +newticks(2)=[0;10;20;30]; +newticks(3)=['0';'10';'20';'30']; +a5.x_ticks=newticks; +newticks1=a5.y_ticks; +newticks1(2)=[0;50;100;150;200]; +newticks1(3)=['0';'50';'100';'150';'200']; +a5.y_ticks=newticks1; +clf(); +plot(x,[200;T(:,7)]); +a6=gca(); +a6.data_bounds=[0,0;30,200]; +xtitle('(f) After 7(0.709) hr ','T degree C','x, cm'); +newticks=a6.x_ticks; +newticks(2)=[0;10;20;30]; +newticks(3)=['0';'10';'20';'30']; +a6.x_ticks=newticks; +newticks1=a6.y_ticks; +newticks1(2)=[0;50;100;150;200]; +newticks1(3)=['0';'50';'100';'150';'200']; +a6.y_ticks=newticks1; |