summaryrefslogtreecommitdiff
path: root/1226/CH21
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1226/CH21
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1226/CH21')
-rwxr-xr-x1226/CH21/EX21.1/EX21_1.jpgbin0 -> 115967 bytes
-rwxr-xr-x1226/CH21/EX21.1/EX21_1.sce26
-rwxr-xr-x1226/CH21/EX21.10/EX21_10.jpgbin0 -> 133134 bytes
-rwxr-xr-x1226/CH21/EX21.10/EX21_10.sce34
-rwxr-xr-x1226/CH21/EX21.11/EX21_11.jpgbin0 -> 116057 bytes
-rwxr-xr-x1226/CH21/EX21.11/EX21_11.sce23
-rwxr-xr-x1226/CH21/EX21.13/EX21_13.jpgbin0 -> 110164 bytes
-rwxr-xr-x1226/CH21/EX21.13/EX21_13.sce23
-rwxr-xr-x1226/CH21/EX21.14/EX21_14.jpgbin0 -> 103222 bytes
-rwxr-xr-x1226/CH21/EX21.14/EX21_14.sce35
-rwxr-xr-x1226/CH21/EX21.15/EX21_15.jpgbin0 -> 119564 bytes
-rwxr-xr-x1226/CH21/EX21.15/EX21_15.sce34
-rwxr-xr-x1226/CH21/EX21.16/EX21_16.jpgbin0 -> 130986 bytes
-rwxr-xr-x1226/CH21/EX21.16/EX21_16.sce30
-rwxr-xr-x1226/CH21/EX21.17/EX21_17.jpgbin0 -> 121169 bytes
-rwxr-xr-x1226/CH21/EX21.17/EX21_17.sce37
-rwxr-xr-x1226/CH21/EX21.18/EX21_18.jpgbin0 -> 118524 bytes
-rwxr-xr-x1226/CH21/EX21.18/EX21_18.sce44
-rwxr-xr-x1226/CH21/EX21.19/EX21_19.jpgbin0 -> 143813 bytes
-rwxr-xr-x1226/CH21/EX21.19/EX21_19.sce26
-rwxr-xr-x1226/CH21/EX21.2/EX21_2.jpgbin0 -> 111458 bytes
-rwxr-xr-x1226/CH21/EX21.2/EX21_2.sce23
-rwxr-xr-x1226/CH21/EX21.20/EX21_20.jpgbin0 -> 133322 bytes
-rwxr-xr-x1226/CH21/EX21.20/EX21_20.sce24
-rwxr-xr-x1226/CH21/EX21.21/EX21_21.jpgbin0 -> 129188 bytes
-rwxr-xr-x1226/CH21/EX21.21/EX21_21.sce29
-rwxr-xr-x1226/CH21/EX21.22/EX21_22.jpgbin0 -> 120006 bytes
-rwxr-xr-x1226/CH21/EX21.22/EX21_22.sce35
-rwxr-xr-x1226/CH21/EX21.23/EX21_23.jpgbin0 -> 134884 bytes
-rwxr-xr-x1226/CH21/EX21.23/EX21_23.sce42
-rwxr-xr-x1226/CH21/EX21.3/EX21_3.jpgbin0 -> 110563 bytes
-rwxr-xr-x1226/CH21/EX21.3/EX21_3.sce25
-rwxr-xr-x1226/CH21/EX21.4/EX21_4.jpgbin0 -> 108823 bytes
-rwxr-xr-x1226/CH21/EX21.4/EX21_4.sce19
-rwxr-xr-x1226/CH21/EX21.5/EX21_5.jpgbin0 -> 113929 bytes
-rwxr-xr-x1226/CH21/EX21.5/EX21_5.sce27
-rwxr-xr-x1226/CH21/EX21.6/EX21_6.jpgbin0 -> 124278 bytes
-rwxr-xr-x1226/CH21/EX21.6/EX21_6.sce32
-rwxr-xr-x1226/CH21/EX21.7/EX21_7.jpgbin0 -> 119052 bytes
-rwxr-xr-x1226/CH21/EX21.7/EX21_7.sce16
-rwxr-xr-x1226/CH21/EX21.8/EX21_8.jpgbin0 -> 109999 bytes
-rwxr-xr-x1226/CH21/EX21.8/EX21_8.sce22
-rwxr-xr-x1226/CH21/EX21.9/EX21_9.jpgbin0 -> 112268 bytes
-rwxr-xr-x1226/CH21/EX21.9/EX21_9.sce30
44 files changed, 636 insertions, 0 deletions
diff --git a/1226/CH21/EX21.1/EX21_1.jpg b/1226/CH21/EX21.1/EX21_1.jpg
new file mode 100755
index 000000000..70576a86e
--- /dev/null
+++ b/1226/CH21/EX21.1/EX21_1.jpg
Binary files differ
diff --git a/1226/CH21/EX21.1/EX21_1.sce b/1226/CH21/EX21.1/EX21_1.sce
new file mode 100755
index 000000000..b2fde026e
--- /dev/null
+++ b/1226/CH21/EX21.1/EX21_1.sce
@@ -0,0 +1,26 @@
+clc;funcprot(0);//EXAMPLE 21.1
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=293;........//Temperature of air entering the turbine in K
+p2=4;.........//Pressure of air after compression in bar
+etac=0.8;....//Efficiency of compressor
+etat=0.85;.....//Efficiency of turbine
+afr=90;........//Air fuel ratio
+ma=3;...........//Mass of air in kg/s
+ga=1.4;........//Ratio of specific heats
+cp=1;.............//Specific heat at constant pressure in kJ/kgK
+C=41800;.............//Calorific value of fuel in kJ/kg
+//Calculations
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+t3=round((C/((afr+1)*cp))+t21);..............//Temperature before expansion in turbine in K
+p4=p1;p3=p2;t4=t3*((p4/p3)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=((afr+1)/afr)*cp*(t3-t41);........//Work done by turbine in kJ/kg of air
+wc=round(1*cp*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+P=wnet*ma;.................//Power developed in kW/kg of air
+disp(P,"Power developed in kW/kg of air:")
+qs=(1/afr)*C;................//Heat supplied in kJ/kg of air
+etath=wnet/qs;................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
diff --git a/1226/CH21/EX21.10/EX21_10.jpg b/1226/CH21/EX21.10/EX21_10.jpg
new file mode 100755
index 000000000..e7186ba75
--- /dev/null
+++ b/1226/CH21/EX21.10/EX21_10.jpg
Binary files differ
diff --git a/1226/CH21/EX21.10/EX21_10.sce b/1226/CH21/EX21.10/EX21_10.sce
new file mode 100755
index 000000000..2611914ce
--- /dev/null
+++ b/1226/CH21/EX21.10/EX21_10.sce
@@ -0,0 +1,34 @@
+clc;funcprot(0);//EXAMPLE 21.10
+// Initialisation of Variables
+t1=288;........//Temperature of air entering the turbine in K
+t3=883;..............//Temperature before expansion in turbine in K
+etac=0.82;....//Efficiency of compressor
+etathp=0.85;.....//Efficiency of high pressure turbine
+etatlp=0.85;.....//Efficiency of low pressure turbine
+rp=7;...........//Pressure ratio
+p1=1.01;...............//Pressure of air before entering compressor
+ga=1.4;........//Ratio of specific heats for compression
+gag=1.333;........//Ratio of specific heats for expansion
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+cpg=1.15;.............//Specific heat at constant pressure in kJ/kgK in generator
+//Calculations
+p2=p1*rp;
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+wc=cp*(t21-t1);............//Compressor work in kJ/kg
+t41=t3-(wc/cpg);..........//Temperature of gasses entering the turbine in K
+disp(t41,"Temperature of gasses entering the turbine in K:")
+t4=round(t3-((t3-t41)/etathp));.........//Ideal temperature of gases entering the turbine in K
+p3=p2;.........//Isobaric processes
+p4=p3/((t3/t4)^(1/((gag-1)/gag)));....//Pressure of gasses entering the power turbine in bar
+disp(p4,"Pressure of gasses entering the power turbine in bar:")
+t5=t41*((((t3/t4)^(1/((gag-1)/gag)))/(rp))^((gag-1)/gag));
+t51=t41-(etatlp*(t41-t5));
+wlp=cpg*(t41-t51);............//Net power output in kW
+disp(wlp,"Net power output in kW:")
+wr=wlp/(wlp+wc);............//Work ratio
+disp(wr,"Work ratio:")
+qs=cpg*(t3-t21);...........//Heat supplied in kJ/kg
+etath=wlp/qs;..........//Thermal efficiency
+disp(etath*100,"Thermal efficiency of the unit:")
+
diff --git a/1226/CH21/EX21.11/EX21_11.jpg b/1226/CH21/EX21.11/EX21_11.jpg
new file mode 100755
index 000000000..068dc7c9b
--- /dev/null
+++ b/1226/CH21/EX21.11/EX21_11.jpg
Binary files differ
diff --git a/1226/CH21/EX21.11/EX21_11.sce b/1226/CH21/EX21.11/EX21_11.sce
new file mode 100755
index 000000000..4b2fd919f
--- /dev/null
+++ b/1226/CH21/EX21.11/EX21_11.sce
@@ -0,0 +1,23 @@
+clc;funcprot(0);//EXAMPLE 21.11
+// Initialisation of Variables
+rp=5.6;................//Pressure ratio
+t1=303;.............//Temperature of intake air in K
+p1=1;............//Pressure of intake air in bar
+t5=973;............//Highest temperature of the cycle in K
+etac=0.85;..........//Effeciency of compressor
+etat=0.9;..........//Efficiency of turbine
+ma=1.2;..........//Rate of air flow in kg/s
+cp=1.02;...........//Specific heat at constant volume in kJ/kgK
+ga=1.41;.............//Ratio of specific heats
+//Calculations
+t2=t1*((sqrt(rp))^((ga-1)/ga));
+t21=((t2-t1)/etac)+t1;
+wc=2*ma*cp*(t21-t1);............//Work input for the two stage compressor in kJ/s
+t6=t5/(rp^((ga-1)/ga));
+t61=t5-etat*(t5-t6);
+wt=ma*cp*(t5-t61);...............//Work output from turbine in kJ/s
+wnet=wt-wc;....................//Net work available in kJ/s
+disp(wnet,"Net work output in kW:")
+qs=ma*cp*(t5-t21);.................//Heat supplied in kJ/s
+etath=wnet/qs;
+disp(etath*100,"Power plant efficiency in %:")
diff --git a/1226/CH21/EX21.13/EX21_13.jpg b/1226/CH21/EX21.13/EX21_13.jpg
new file mode 100755
index 000000000..471ac956a
--- /dev/null
+++ b/1226/CH21/EX21.13/EX21_13.jpg
Binary files differ
diff --git a/1226/CH21/EX21.13/EX21_13.sce b/1226/CH21/EX21.13/EX21_13.sce
new file mode 100755
index 000000000..f0dd7cc42
--- /dev/null
+++ b/1226/CH21/EX21.13/EX21_13.sce
@@ -0,0 +1,23 @@
+clc;funcprot(0);//EXAMPLE 21.13
+// Initialisation of Variables
+t1=288;.............//Temperature of intake air in K
+rp=4;.............//Pressure ratio
+etac=0.82;.........//Compressor efficiency
+etahe=0.78;...........//Efficiency of heat exchanger
+etat=0.7;...........//Turbine efficiency
+t3=873;............//Temperature before expansion in turbine in K
+R=0.287;............//Gas constant for air in kJ/kgK
+ga=1.4;...........//Ratio of specific heats
+//Calculations
+t2=t1*((rp)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;...............//Actual temperature of air after compression in K
+t4=t3/(rp^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-etat*(t3-t4);............//Actual temperature after expansion in turbine in K
+cp=R*(ga/(ga-1));..............//Specific heat at constant pressure in kJ/kgK
+wc=cp*(t21-t1);.............//Compressor work in kJ/kg
+wt=cp*(t3-t41);....................//Turbine work in kJ/kg
+wnet=wt-wc;....................//Net work available in kJ/s
+t5=(etahe*(t41-t21))+t21;
+qs=cp*(t3-t5);.................//Heat supplied in kJ/kg
+etac=wnet/qs;...............//Cycle efficiency
+disp(etac*100,"Cycle efficiency in %:")
diff --git a/1226/CH21/EX21.14/EX21_14.jpg b/1226/CH21/EX21.14/EX21_14.jpg
new file mode 100755
index 000000000..72ab9025d
--- /dev/null
+++ b/1226/CH21/EX21.14/EX21_14.jpg
Binary files differ
diff --git a/1226/CH21/EX21.14/EX21_14.sce b/1226/CH21/EX21.14/EX21_14.sce
new file mode 100755
index 000000000..a791ace2b
--- /dev/null
+++ b/1226/CH21/EX21.14/EX21_14.sce
@@ -0,0 +1,35 @@
+clc;funcprot(0);//EXAMPLE 21.14
+// Initialisation of Variables
+etahe=0.72;.................//Efficiency of heat exchanger
+p1=1.01;.........//Pressure of air while entering the turbine in bar
+t1=293;........//Temperature of air entering the turbine in K
+p2=4.04;.........//Pressure of air after compression in bar
+etat=0.85;..........//Turbine efficiency
+pdhe=0.05;............//Pressure drop on each side of heat exchanger in bar
+pdcc=0.14;...........//Pressure drop in combustion chamber in bar
+etac=0.8;...........//Compressor efficiency
+ga=1.4;.............//Ratio of specific heats
+C=41800;.............//Calorific value of fuel in kJ/kg
+cp=1.024;...........//Specific heat at constant pressure in kJ/kgK
+afrc=90;..............//Air fuel ratio for simple cycle
+//Calculations
+t2=(t1*((p2/p1)^((ga-1)/ga)));...............//Ideal temperature of air after compression in K
+t21=round(((t2-t1)/etac)+t1);...............//Actual temperature of air after compression in K
+t3=((1*C)/(cp*(afrc+1)))+t21;............//Temperature before expansion in turbine in K
+p4=p1;p3=p2-pdcc;t4=round(t3*((p4/p3)^((ga-1)/ga)));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+etath=(t3-t41-t21+t1)/(t3-t21);...........//Thermal efficiency in simple cycle
+disp(etath*100,"Thermal efficiency in simple cycle in %:")
+p3he=p2-pdhe-pdcc;..........//Pressure before expansion in turbine in bar in heat exchanger cycle
+p4he=p1+pdhe;................//Pressure after expansion in turbine in bar in heat exchanger cycle
+t4he=t3*((p4he/p3he)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K in heat exchanger cycle
+t41he=round(t3-(etat*(t3-t4he)));.................//Actual temperature after expansion in turbine in K in heat exchanger cycle
+t5=(etahe*(t41he-t21))+t21;
+etathhe=(t3-t41he-t21+t1)/(t3-t5);.............//Thermal efficiency for heat exchanger cycle
+disp(etathhe*100,"Thermal efficiency in heat exchanger cycle in %:")
+inc=etathhe-etath;
+disp(inc*100,"Increase in thermal efficiency in %:")
+
+
+
+
diff --git a/1226/CH21/EX21.15/EX21_15.jpg b/1226/CH21/EX21.15/EX21_15.jpg
new file mode 100755
index 000000000..d03828580
--- /dev/null
+++ b/1226/CH21/EX21.15/EX21_15.jpg
Binary files differ
diff --git a/1226/CH21/EX21.15/EX21_15.sce b/1226/CH21/EX21.15/EX21_15.sce
new file mode 100755
index 000000000..ac5889c84
--- /dev/null
+++ b/1226/CH21/EX21.15/EX21_15.sce
@@ -0,0 +1,34 @@
+clc;funcprot(0);//EXAMPLE 21.15
+// Initialisation of Variables
+t1=293;........//Temperature of air entering the turbine in K
+rp=9;............//Overall pressure ratio
+etac=0.8;........//Efficiency of compressor
+t6=898;..........//Reheat remperature
+t8=t6;etat=0.85;.......//Efficiency of turbine
+etamech=0.95;..........//Mechanical efficiency
+etahe=0.8;...............//Heat exchanger thermal efficiency
+cpg=1.15;.............//Specific heat capacity for gases in heat exchanger in kJ/kgK
+cpa=1.005;............//Specific heat capacity for normal air in kJ/kgK
+gag=1.333;.............//Ratio of specific heats for gases in heat exchanger
+ga=1.4;...............//Ratio of specific heats for normal gases
+P=4500;.................//Power output of turbine in kW
+//Calculations
+t2=t1*((sqrt(rp))^((ga-1)/ga));
+t21=((t2-t1)/etac)+t1;
+wc=cpa*(t21-t1);............//Work input per compressor stage
+whp=(2*wc)/etamech;.........//Work output of HP turbine in kJ/kg
+t71=t6-(whp/cpg);t7=round(t6-((t6-t71)/etat));
+k=(rp/((t6/t7)^((gag)/(gag-1))))^((gag-1)/gag);
+k1=((round((k/2)*100))*2)/100;..............//Rounding off upto 2 decimals
+t9=t8/(k1);
+t91=t8-((t8-t9)*etat);
+wout=cpg*(t8-t91)*etamech;..............//Net work output in kJ/kg
+t5=etahe*(t91-t21)+t21;
+qs=cpg*(t6-t5)+cpg*(t8-t71);...............//Heat supplied
+etath=wout/qs;.................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+wgross=whp+(wout/etamech);.........//Gross work output in kJ/kg
+wr=wout/wgross;................//Work ratio
+disp(wr,"The workk ratio is:")
+m1=P/wout;...............//Mass flow in kg/s
+disp(m1,"Mass flow in kg/s:")
diff --git a/1226/CH21/EX21.16/EX21_16.jpg b/1226/CH21/EX21.16/EX21_16.jpg
new file mode 100755
index 000000000..9b9e1cb15
--- /dev/null
+++ b/1226/CH21/EX21.16/EX21_16.jpg
Binary files differ
diff --git a/1226/CH21/EX21.16/EX21_16.sce b/1226/CH21/EX21.16/EX21_16.sce
new file mode 100755
index 000000000..5b158618d
--- /dev/null
+++ b/1226/CH21/EX21.16/EX21_16.sce
@@ -0,0 +1,30 @@
+clc;funcprot(0);//EXAMPLE 21.16
+// Initialisation of Variables
+//Conditions of the closed gas turbine
+t1=293;.............//Temperature at the inlet of first stage compressor in K
+t5=1023;.................//Maximum temperature in K
+p1=1.5;................//Inlet pressure in bar
+p2=6;.................//Pressure in bar
+etac=0.82;..............//Compressor efficiency
+etat=0.82;..............//Turbine efficiency
+etare=0.70;................//Regenerator efficiency
+P=350;....................//Power developed by the plant in kW
+ga=1.4;................//Ratio of specific heats
+cp=1.005;..............//Specific heat at constant pressure in kJ/kgK
+t3=t1;
+//Calculations
+t2=t1*((sqrt(p2/p1))^((ga-1)/ga));
+t21=((t2-t1)/etac)+t1;t41=t21;
+t6=t5/((p2/sqrt(p1*p2))^((ga-1)/ga));
+t61=t5-(etat*(t5-t6));t81=t61;
+t7=t5;
+ta=(etare*(t81-t41))+t41;.......//Temperature of air coming out of regenerator in K
+wnet=2*cp*(t5-t61-t21+t1);........//Net work done in kJ/kg of air
+qs=cp*(t5-t41+t7-t61);...........//Heat supplied without regenerator in kJ/kg of air
+qsr=cp*(t5-ta+t7-t61);............//Heat supplied with regenerator in kJ/kg of air
+etath=wnet/qs;.............//Thermal efficiency (without regenerator)
+etathr=wnet/qsr;.........//Thermal efficiency (with regenerator)
+mfl=P/wnet;..........//mass of fluid circulated in kg/s
+disp(etath*100,"Thermal efficiency of the turbine without regenerator (in %):")
+disp(etathr*100,"Thermal efficiency of the turbine with regenerator (in %):")
+disp(mfl,"Mass of fluid circulated in kg/s:")
diff --git a/1226/CH21/EX21.17/EX21_17.jpg b/1226/CH21/EX21.17/EX21_17.jpg
new file mode 100755
index 000000000..fe1aab3bf
--- /dev/null
+++ b/1226/CH21/EX21.17/EX21_17.jpg
Binary files differ
diff --git a/1226/CH21/EX21.17/EX21_17.sce b/1226/CH21/EX21.17/EX21_17.sce
new file mode 100755
index 000000000..e9768bb95
--- /dev/null
+++ b/1226/CH21/EX21.17/EX21_17.sce
@@ -0,0 +1,37 @@
+clc;funcprot(0);//EXAMPLE 21.17
+// Initialisation of Variables
+t1=293;............//Temperature of inlet air into low pressure compressor in K
+p1=1.05;.........//Pressure of inlet air into low pressure compressor in bar
+t3=300;...........//Temperature of air after passing it through intercooler in K
+t6=1023;..........//temperature of air in combustion chamber in K
+rp=2;...........//Pressure ratio of each compressor
+etac=0.82;........//Compressor efficiency
+etat=0.82;..........//Turbine efficiency
+etaht=0.72;............//Heat exchanger efficiency
+ma=16;...........//Air flow in kg/s
+ga=1.4;...........//Ratio of specific heats for air
+gag=1.33;..........//Ratio of specific heats for gases
+cpa=1.0;...........//Specific heat at constant pressure in kJ/kgK for air
+cpg=1.15;.........//Specific heat at constant pressure in kJ/kgK for gases
+C=42000;.........//Calorific value of fuel in kJ/kg
+//Calculations
+t2=round(t1*(rp^((ga-1)/ga)));
+t21=round(((t2-t1)/etac)+t1);
+t4=t3*(rp^((ga-1)/ga));
+t41=round(((t4-t3)/etac)+t3);
+t71=round(((cpg*t6)-cpa*(t21-t1+t41-t3))/cpg);
+t7=t6-((t6-t71)/etat);
+p6=p1*rp*rp;
+p7=p6/((t6/t7)^((gag)/(gag-1)));
+t8=round(t71/((p7/p1)^((gag-1)/gag)));
+t81=round(t71-(etat*(t71-t8)));
+P=cpg*(t71-t81);...........//Net power output in kJ/kg
+disp(P*ma,"Net power output in kW: ")
+t5=etaht*(t81-t41)+t41;
+qs=ma*cpg*(t6-t5);......//Heat supplied in combustion chamber in kJ/s
+etath=P*ma/qs;.........//Thermal efficiency
+disp(etath*100,"Thermal efficiency is (in %):")
+afr=C/(cpg*(t6-t5));......//Air fuel ratio
+mf=ma*3600/afr;..............//Fuel supplied per hour in kg
+sfc=mf/(P*ma);...........//Specific fuel consumption in kg/kWh
+disp(sfc,"Specific fuel consumption in kg/kWh:")
diff --git a/1226/CH21/EX21.18/EX21_18.jpg b/1226/CH21/EX21.18/EX21_18.jpg
new file mode 100755
index 000000000..7ef1cd3fc
--- /dev/null
+++ b/1226/CH21/EX21.18/EX21_18.jpg
Binary files differ
diff --git a/1226/CH21/EX21.18/EX21_18.sce b/1226/CH21/EX21.18/EX21_18.sce
new file mode 100755
index 000000000..0c81c20b4
--- /dev/null
+++ b/1226/CH21/EX21.18/EX21_18.sce
@@ -0,0 +1,44 @@
+clc;funcprot(0);//EXAMPLE 21.18
+// Initialisation of Variables
+t1=293;............//Temperature of inlet air into low pressure compressor in K
+p1=1.1;.........//Pressure of inlet air into low pressure compressor in bar
+p2=3.3;..........//Pressure of air in the low pressure compressor in bar
+t3=300;.............//Intercooled temperature in K
+pli=0.15;..........//Loss in pressure due to intercooling in bar
+p3=p2-pli;...........//Pressure after intercooling in bar
+p4=9.45;............//Pressure of air after high pressure compressor in bar
+p6=p4;t6=973;.........//Temperature of gases supplied to high pressure turbine in K
+t8=943;.........//Reheat temperature in K
+plr=0.12;...........//Loss of pressure after reheating in bar
+p7=3.62;............//Pressure of gases at the end of expansion in high pressure turbine in bar
+p8=p7-plr;...........//Pressure of outlet gases in bar
+ga=1.4;...........//Ratio of specific heats for air
+gag=1.33;..........//Ratio of specific heats for gases
+cpa=1.005;...........//Specific heat at constant pressure in kJ/kgK for air
+cpg=1.15;.........//Specific heat at constant pressure in kJ/kgK for gases
+etac=0.82;........//Compressor efficiency
+etat=0.85;..........//Turbine efficiency
+etaht=0.65;.........//Efficiency of heat exchanger
+P=6000;..................//Power generated in kW
+p9=p1;
+//Calculations
+t2=round(t1*((p2/p1)^((ga-1)/ga)));
+t21=round(((t2-t1)/etac)+t1);
+t4=round(t3*((p4/p3)^((ga-1)/ga)));
+t41=round(((t4-t3)/etac)+t3);
+t7=round(t6/((p6/p7)^((gag-1)/gag)));
+t71=round(t6-(etat*(t6-t7)));
+t9=round(t8/((p8/p9)^((gag-1)/gag)));
+t91=round(t8-(etat*(t8-t9)));
+t5=round(etaht*(t91-t41)+t41);
+wthp=cpg*(t6-t71);.......//Work done by high pressure turbine in kJ/kg of gas
+wtlp=cpg*(t8-t9);.......//Work done by low pressure turbine in kJ/kg of gas
+wchp=cpg*(t21-t1);.......//Work done by high pressure compressor in kJ/kg of gas
+wclp=cpg*(t41-t3);.......//Work done by low pressure compressor in kJ/kg of gas
+qs=cpg*(t6-t5+t8-t71);.........//Heat supplied in kJ/kg of gas
+etath=(wthp+wtlp-wchp-wclp)/qs;..//Overall efficiency
+disp(etath*100,"Overall efficiency (in %):")
+wr=(wthp+wtlp-wchp-wclp)/(wthp+wtlp);......//Work ratio
+disp(wr,"Work ratio :")
+m=P/(wthp+wtlp-wchp-wclp);.....//Mass flow rate
+disp(m,"Mass flow rate in kg/s:")
diff --git a/1226/CH21/EX21.19/EX21_19.jpg b/1226/CH21/EX21.19/EX21_19.jpg
new file mode 100755
index 000000000..2b04d3b0e
--- /dev/null
+++ b/1226/CH21/EX21.19/EX21_19.jpg
Binary files differ
diff --git a/1226/CH21/EX21.19/EX21_19.sce b/1226/CH21/EX21.19/EX21_19.sce
new file mode 100755
index 000000000..c56dacef4
--- /dev/null
+++ b/1226/CH21/EX21.19/EX21_19.sce
@@ -0,0 +1,26 @@
+clc;funcprot(0);//EXAMPLE 21.19
+// Initialisation of Variables
+ma=60.2;...........//Rate of air consumption in kg/s
+delh=230;.......//Enthalpy change for nozzle in kJ/kg
+z=0.96;..........//Velocity co efficient
+afr=70;............//Air fuel ratio
+etaco=0.92;...............//Combustion eficiency
+CV=42000;..............//Calorific value of fuel in kJ/kg
+v=1000;............//Velocity of aircraft in km/h
+Ca=v*(5/18);............//Aircraft velocity in m/s
+//Calculations
+Cj=z*sqrt(2*delh*v);...........//Exit velocity of jet
+disp(Cj,"Exit velocity of jet in m/s:")
+mf=ma/afr;.........//Rate of fuel consumption
+disp(mf,"Rate of fuel consumption in kg/s:")
+tp=ma*(Cj-Ca);......//Thrust produced in N
+tsfc=mf/tp;.........//Thrust specific fuel consumption in kg/N
+disp(tsfc,"Thrust specific fuel consumption in kg/N:")
+etath=((Cj^2)-(Ca^2))/(2*(1/afr)*CV*etaco*1000);.........//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+pp=(ma/1000)*((Cj^2)-(Ca^2))/2;................//Propulsive power in kW
+disp(pp,"Propulsive power in kW:")
+etapp=(2*Ca)/(Cj+Ca);......................//Propulsive efficiency
+disp(etapp*100,"Propulsive efficiency in %:")
+etao=((Cj-Ca)*Ca)/((1/afr)*CV*etaco*1000);............//Overall efficiency
+disp(etao*100,"Overall efficiency in %:")
diff --git a/1226/CH21/EX21.2/EX21_2.jpg b/1226/CH21/EX21.2/EX21_2.jpg
new file mode 100755
index 000000000..42b97b5db
--- /dev/null
+++ b/1226/CH21/EX21.2/EX21_2.jpg
Binary files differ
diff --git a/1226/CH21/EX21.2/EX21_2.sce b/1226/CH21/EX21.2/EX21_2.sce
new file mode 100755
index 000000000..1eb5b6758
--- /dev/null
+++ b/1226/CH21/EX21.2/EX21_2.sce
@@ -0,0 +1,23 @@
+clc;funcprot(0);//EXAMPLE 21.2
+// Initialisation of Variables
+t1=288;........//Temperature of air entering the turbine in K
+t3=883;..............//Temperature before expansion in turbine in K
+etac=0.8;....//Efficiency of compressor
+etat=0.82;.....//Efficiency of turbine
+rp=6;...........//Pressure ratio
+ma=16;...........//Mass of air in kg/s
+gac=1.4;........//Ratio of specific heats for compression process
+gae=1.333;............//Ratio of specific heats for expansion process
+cpc=1.005;.............//Specific heat at constant pressure in kJ/kgK during compression process
+cpe=1.11;.............//Specific heat at constant pressure in kJ/kgK during expansion process
+C=41800;.............//Calorific value of fuel in kJ/kg
+//Calculations
+t2=t1*((rp)^((gac-1)/gac));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+t4=t3/((rp)^((gae-1)/gae));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=cpe*(t3-t41);........//Work done by turbine in kJ/kg of air
+wc=(1*cpc*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+P=wnet*ma;.................//Power developed in kW/kg of air
+disp(P,"Power developed in kW/kg of air:")
diff --git a/1226/CH21/EX21.20/EX21_20.jpg b/1226/CH21/EX21.20/EX21_20.jpg
new file mode 100755
index 000000000..917022c1b
--- /dev/null
+++ b/1226/CH21/EX21.20/EX21_20.jpg
Binary files differ
diff --git a/1226/CH21/EX21.20/EX21_20.sce b/1226/CH21/EX21.20/EX21_20.sce
new file mode 100755
index 000000000..02a2cba37
--- /dev/null
+++ b/1226/CH21/EX21.20/EX21_20.sce
@@ -0,0 +1,24 @@
+clc;funcprot(0);//EXAMPLE 21.20
+// Initialisation of Variables
+v=800;.............//Speed of the turbojet in km/h
+etapp=0.55;......//Propulsive efficiency
+etao=0.17;.........//Overall efficiency
+al=9500;...............//Altitude in m
+rhoa=0.17;............//Density of air at the given altitude in kg/m^3
+dr=6100;...........//Drag on the plane in N
+CV=46000;.........//Calorific value of fuel in kJ/kg
+//Calculations
+Ca=v*(1000/3600);.........//Velocity of jet in m/s
+Cj=((2*Ca)/etapp)-Ca;........//Velocity of gases at nozzle exit relative to the aircraft in m/s
+disp(Cj-Ca,"Absolute velocity of jet in m/s:")
+ma=dr/(Cj-Ca);............//Rate of air flow in kg/s
+Va=(ma/rhoa)*60;..........//Volume of air compresssed per min in kg
+disp(Va,"Volume of air compressed in kg/min:")
+d=sqrt((Va*4)/(60*%pi*Cj));..........//Diameter of the jet in m
+disp(d*1000,"Diameter of the jet in mm:")
+tp=dr*(Ca/1000);...........//Thrust power in kW
+wt=tp/etapp;................//Turbine output in kW
+disp(wt,"Turbine output in kW:")
+mf=wt/(etao*CV);...........//Rate of fuel consumption in kg/s
+afr=ma/mf;..........//Air fuel ratio
+printf("\n\nAir fuel ratio is %f:1",afr)
diff --git a/1226/CH21/EX21.21/EX21_21.jpg b/1226/CH21/EX21.21/EX21_21.jpg
new file mode 100755
index 000000000..e76cf6493
--- /dev/null
+++ b/1226/CH21/EX21.21/EX21_21.jpg
Binary files differ
diff --git a/1226/CH21/EX21.21/EX21_21.sce b/1226/CH21/EX21.21/EX21_21.sce
new file mode 100755
index 000000000..3528f33e6
--- /dev/null
+++ b/1226/CH21/EX21.21/EX21_21.sce
@@ -0,0 +1,29 @@
+clc;funcprot(0);//EXAMPLE 21.21
+// Initialisation of Variables
+t1=288;..........//Temperature of the inlet air into compressor in K
+p1=1.01;......//Pressure of the inlet air into compressor in bar
+t3=1023;.........//Maximum temperature in K
+p2=4.04;.........//Pressure of air at the end of compression in bar
+etac=0.82;.......//compressor efficiency
+etat=0.78;......//Turbine efficiency
+etan=0.88;........//Nozzle efficiency
+R=0.287;.........//Gas constant for air in kJ/kgK
+ga=1.4;............//Ratio of specific heats
+C=42000;..........//Calorific value of fuel in kJ/kg
+//Calculations
+t2=t1*((p2/p1)^((ga-1)/ga));........//Ideal temperature at the end of compression in K
+t21=((t2-t1)/etac)+t1;...........//Actual temperature at the end of compression in K
+cp=R*(ga/(ga-1));..............//Specific heat at constant pressure in kJ/kgK
+Pc=cp*(t21-t1);.............//Power required to drive the compressor in kW
+disp(Pc,"Power required to drive the compressor in kW:")
+afr=((C)/(cp*(t3-t21)))-1;....//Air fuel ratio
+printf("\n\nAir fuel ratio %f:1\n",afr)
+t41=t1+t3-t21;......//Actual temperatur of gases leaving the turbine in K
+t4=t3-((t3-t41)/etat);......//Ideal temperature of gases leaving the turbine in K
+p3=p2;p4=p3*((t4/t3)^(ga/(ga-1)));.......//Pressure of gases leaving the turbine in bar
+disp(p4,"Pressure of gases leaving the turbine in bar:")
+p5=p1;t5=t41/((p4/p5)^((ga-1)/ga));
+t51=t41-(etan*(t41-t5));
+Cj=sqrt(2*cp*(t41-t51)*1000);..............//Jet velocity in m/s
+th=Cj*1;..................//Thrust per kg per second in N
+disp(th,"Thrust per kg of air per second in N:")
diff --git a/1226/CH21/EX21.22/EX21_22.jpg b/1226/CH21/EX21.22/EX21_22.jpg
new file mode 100755
index 000000000..60b7a65c9
--- /dev/null
+++ b/1226/CH21/EX21.22/EX21_22.jpg
Binary files differ
diff --git a/1226/CH21/EX21.22/EX21_22.sce b/1226/CH21/EX21.22/EX21_22.sce
new file mode 100755
index 000000000..2d586399d
--- /dev/null
+++ b/1226/CH21/EX21.22/EX21_22.sce
@@ -0,0 +1,35 @@
+clc;funcprot(0);//EXAMPLE 21.22
+// Initialisation of Variables
+Ca=216;................//Speed of aircraft in m/s
+t1=265.8;...............//Intake air temperature in K
+p1=0.78;...............//Intake air pressure in bar
+rp=5.8;..................//Pressure ratio in compressor
+t4=1383;.................//Temperature of gases entering the gas turbine in K
+pd=0.168;...............//Pressure drop in combustion chamber in bar
+etad=0.9;..............//Diffuser efficiency
+etan=0.9;............//Nozzle efficiency
+etac=0.9;............//Compressor efficiency
+etat=0.8;.............//Turbine efficiency
+C=44150;............//Calorific value of fuel in kJ/kg
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+ga=1.4;...............//Ratio of specific heats
+cin=0.12;...............//Inlet cross sectio of the diffuser in m^3
+R=0.287;............//Gas constant in kJ/kgK
+//Calculations
+t2=t1+((Ca*Ca)/(2*cp*1000));......//For ideal diffuser
+t21=t1+((Ca*Ca)/(2*cp*etad*1000));......//For actual diffuser
+p2=p1*((t2/t1)^(ga/(ga-1)));
+t3=t21*(rp^((ga-1)/ga));t31=t21+((t3-t21)/etac);
+afr=(C-(cp*t4))/(cp*(t4-t31));............//Air fuel ratio
+disp(afr,"Air fuel ratio:")
+p3=p2*rp;p4=p3-pd;...............//Pressure of gases entering the turbine in bar
+t51=t4-(t31-t21);t5=round(t4-((t4-t51)/etat));
+p5=p4/((t4/t5)^(ga/(ga-1)));p6=p1;
+t6=t51/((p5/p6)^((ga-1)/ga));t61=t51-(etac*(t51-t6));
+Cj=44.72*sqrt(cp*(t51-t61));........//Velocity at the exit of the nozzle in m/s
+st=(1+(1/afr))*Cj;............//Specific thrust in N/kg
+disp(st,"Specific thrust in N/kg:")
+v1=Ca*cin;...........//Volume of flowing air in m^3/s
+ma=(p1*v1*10^5)/(R*t1*1000);.........//Mass flow of air
+tt=ma*st;..............//Total thrust in N
+disp(tt,"Total thrust in N:")
diff --git a/1226/CH21/EX21.23/EX21_23.jpg b/1226/CH21/EX21.23/EX21_23.jpg
new file mode 100755
index 000000000..dcdee40c7
--- /dev/null
+++ b/1226/CH21/EX21.23/EX21_23.jpg
Binary files differ
diff --git a/1226/CH21/EX21.23/EX21_23.sce b/1226/CH21/EX21.23/EX21_23.sce
new file mode 100755
index 000000000..fe1152b49
--- /dev/null
+++ b/1226/CH21/EX21.23/EX21_23.sce
@@ -0,0 +1,42 @@
+clc;funcprot(0);//EXAMPLE 21.23
+// Initialisation of Variables
+al=9000;..........//Altitude in m
+Ca=215;...........//Speed of aircraft in m/s
+TP=750;.............//Thrust power developed in kW
+p1=0.32;...........//Inlet pressure of air in bar
+t1=231;.............//Inlet temperature of air in K
+t3=963;.............//Temperature of gases leaving the combustion chamber in K
+rpc=5.2;............//Pressure ratio
+C=42500;..........//Calorific value of fuel in kJ/kg
+C41=195;.........//Velocity in ducts
+etac=0.86;..........//Compressor efficiency
+ga=1.4;............//Ratio of specific heats for air
+gag=1.33;............//Ratio of specific heats for gases
+etat=0.86;..........//Turbine efficiency
+etajt=0.9;..........//Jet tube efficiency
+cp=1.005;............//Specific heat at constant pressure in kJ/kgK for air
+cpg=1.087;............//Specific heat at constant pressure in kJ/kgK for gases
+R=0.29;..................//Gas constant for exhaust gases in kJ/kgK
+//Calculations
+t2=t1*(rpc^((ga-1)/ga));
+t21=t1+((t2-t1)/etac);
+mf=(cpg*(t3-t21))/(C-(cpg*(t3-t21)));
+afr=1/mf;..........//Air fuel ratio
+t41=round(t3-((cp*(t21-t1))/(cpg*(1+mf))));
+t4=t3-((t3-t41)/etat);p4=rpc;
+rpt=(t3/t4)^(gag/(gag-1));.............//Expansion pressure ratio in turbine
+rpj=p4/rpt;....................//Expansion pressure ratio in jet tube
+t5=t41/(rpj^((gag-1)/gag));
+Cj=sqrt(etajt*2*((cpg*1000*(t41-t5))+((C41*C41)/2)));
+etao=((((1+mf)*Cj)-Ca)*Ca)/(1000*mf*C);......//Overall efficiency
+disp(etao*100,"Overall efficiency in %:")
+ma=(TP*1000)/((((1+mf)*Cj)-Ca)*Ca);........//Rate of air consumption in kg/s
+disp(ma,"Rate of air consumption in kg/s:")
+P=ma*(1+mf)*cpg*(t3-t41);..............//Power developed by the turbine in kW
+disp(P,"Power developed by turbine in kW:")
+t51=t41-(((Cj^2)-(C41^2))/(2*1000*cpg));
+rhoe=(p1*10^5)/(R*1000*t51);..........//Density of exhaust gases
+Ajt=(ma*(1+mf))/(Cj*rhoe);.......//Discharge of jet area in m^2
+disp(Ajt,"The outlet area of jet tube in m^2:")
+sfc=(mf*ma*3600)/(1000*(TP/Ca));..........//Specific fuel consumption in kg/thrust-hour
+disp(sfc,"Specific fuel consumption in kg per kg of thrust:")
diff --git a/1226/CH21/EX21.3/EX21_3.jpg b/1226/CH21/EX21.3/EX21_3.jpg
new file mode 100755
index 000000000..d3c2c08c2
--- /dev/null
+++ b/1226/CH21/EX21.3/EX21_3.jpg
Binary files differ
diff --git a/1226/CH21/EX21.3/EX21_3.sce b/1226/CH21/EX21.3/EX21_3.sce
new file mode 100755
index 000000000..e20bc1aeb
--- /dev/null
+++ b/1226/CH21/EX21.3/EX21_3.sce
@@ -0,0 +1,25 @@
+clc;funcprot(0);//EXAMPLE 21.3
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=300;........//Temperature of air entering the turbine in K
+p2=6.2;.........//Pressure of air after compression in bar
+etac=0.88;....//Efficiency of compressor
+etat=0.9;.....//Efficiency of turbine
+far=0.017;........//Fuel air ratio
+ga=1.4;........//Ratio of specific heats for compression
+gae=1.333;........//Ratio of specific heats for expansion
+cp=1.147;.............//Specific heat at constant pressure in kJ/kgK during expansion
+cpc=1.005;.............//Specific heat at constant pressure in kJ/kgK during compression
+C=44186;.............//Calorific value of fuel in kJ/kg
+//Calculations
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+t3=(((C*far)/((far+1)*cpc))+t21);..............//Temperature before expansion in turbine in K
+p4=p1;p3=p2;t4=t3*((p4/p3)^((gae-1)/gae));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=(cp*(t3-t41));........//Work done by turbine in kJ/kg of air
+wc=round(1*cpc*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+qs=(far)*C;................//Heat supplied in kJ/kg of air
+etath=wnet/qs;................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
diff --git a/1226/CH21/EX21.4/EX21_4.jpg b/1226/CH21/EX21.4/EX21_4.jpg
new file mode 100755
index 000000000..a25e0590c
--- /dev/null
+++ b/1226/CH21/EX21.4/EX21_4.jpg
Binary files differ
diff --git a/1226/CH21/EX21.4/EX21_4.sce b/1226/CH21/EX21.4/EX21_4.sce
new file mode 100755
index 000000000..531242c8f
--- /dev/null
+++ b/1226/CH21/EX21.4/EX21_4.sce
@@ -0,0 +1,19 @@
+clc;funcprot(0);//EXAMPLE 21.4
+// Initialisation of Variables
+t1=300;........//Temperature of air entering the turbine in K
+t3=1148;..............//Temperature before expansion in turbine in K
+etac=0.8;....//Efficiency of compressor
+etat=0.852;.....//Efficiency of turbine
+rp=4;...........//Pressure ratio
+p1=1;...............//Pressure of air before entering compressor
+ga=1.4;........//Ratio of specific heats
+cp=1.0;.............//Specific heat at constant pressure in kJ/kgK
+C=42000;.............//Calorific value of fuel in kJ/kg
+perlcc=10;............//Percent loss of calorific value of fuel in combustion chamber
+//Calculations
+p2=p1*rp;.................//Pressure of air after compression in bar
+etacc=(100-perlcc)/100;.......//Efficiency of combustion chamber
+t2=t1*((rp)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+afr=((C*etacc)/(cp*(t3-t21)))-1;........//Air fuel ratio
+printf("Air fuel ratio is %d:1",round(afr))
diff --git a/1226/CH21/EX21.5/EX21_5.jpg b/1226/CH21/EX21.5/EX21_5.jpg
new file mode 100755
index 000000000..8e30bf535
--- /dev/null
+++ b/1226/CH21/EX21.5/EX21_5.jpg
Binary files differ
diff --git a/1226/CH21/EX21.5/EX21_5.sce b/1226/CH21/EX21.5/EX21_5.sce
new file mode 100755
index 000000000..c59b20807
--- /dev/null
+++ b/1226/CH21/EX21.5/EX21_5.sce
@@ -0,0 +1,27 @@
+clc;funcprot(0);//EXAMPLE 21.5
+// Initialisation of Variables
+t1=300;........//Temperature of air entering the turbine in K
+t3=883;..............//Temperature before expansion in turbine in K
+etac=0.8;....//Efficiency of compressor
+etat=0.852;.....//Efficiency of turbine
+rp=4;...........//Pressure ratio
+p1=1;...............//Pressure of air before entering compressor
+ga=1.4;........//Ratio of specific heats
+cp=1.11;.............//Specific heat at constant pressure in kJ/kgK
+C=42000;.............//Calorific value of fuel in kJ/kg
+perlcc=10;............//Percent loss of calorific value of fuel in combustion chamber
+//Calculations
+p2=p1*rp;.................//Pressure of air after compression in bar
+etacc=(100-perlcc)/100;.......//Efficiency of combustion chamber
+t2=t1*((rp)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+qs=cp*(t3-t21);...................//Heat supplied in kJ/kg
+t4=t3/((rp)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=cp*(t3-t41);........//Work done by turbine in kJ/kg of air
+wc=(1*cp*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+etath=wnet/qs;................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+wrr=wnet/wt;...................//Work ratio
+disp(wrr,"The work ratio is:")
diff --git a/1226/CH21/EX21.6/EX21_6.jpg b/1226/CH21/EX21.6/EX21_6.jpg
new file mode 100755
index 000000000..80d74b8ec
--- /dev/null
+++ b/1226/CH21/EX21.6/EX21_6.jpg
Binary files differ
diff --git a/1226/CH21/EX21.6/EX21_6.sce b/1226/CH21/EX21.6/EX21_6.sce
new file mode 100755
index 000000000..a6246bbdd
--- /dev/null
+++ b/1226/CH21/EX21.6/EX21_6.sce
@@ -0,0 +1,32 @@
+clc;funcprot(0);//EXAMPLE 21.6
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=293;........//Temperature of air entering the turbine in K
+p2=5;.........//Pressure of air after compression in bar
+plcc=0.1;.....//Pressure loss in combustion chamber in bar
+t3=953;............//Temperature before expansion in turbine in K
+etac=0.85;....//Efficiency of compressor
+etat=0.8;.....//Efficiency of turbine
+etacc=0.85;......//Efficiency of combustion chamber
+ga=1.4;........//Ratio of specific heats
+cp=1.024;.............//Specific heat at constant pressure in kJ/kgK
+P=1065;.............//Power developed by the plant in kW
+
+//Calculations
+p3=p2-plcc;........................//Pressure before expansion in turbine in bar
+p4=p1;
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+t4=t3*((p4/p3)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=(cp*(t3-t41));........//Work done by turbine in kJ/kg of air
+wc=round(1*cp*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+ma=P/wnet;.............//Quantity of air in circulation in kg
+disp(ma,"Quantity of air in circulation in kg")
+qs=cp*(t3-t21)/etac;..................//Actual heat supplied per kg of air circulation in kJ
+disp(qs,"Actual heat supplied per kg of air circulation in kJ:")
+etath=wnet/qs;.............//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+
+
diff --git a/1226/CH21/EX21.7/EX21_7.jpg b/1226/CH21/EX21.7/EX21_7.jpg
new file mode 100755
index 000000000..35e15d264
--- /dev/null
+++ b/1226/CH21/EX21.7/EX21_7.jpg
Binary files differ
diff --git a/1226/CH21/EX21.7/EX21_7.sce b/1226/CH21/EX21.7/EX21_7.sce
new file mode 100755
index 000000000..7696c8bb0
--- /dev/null
+++ b/1226/CH21/EX21.7/EX21_7.sce
@@ -0,0 +1,16 @@
+clc;funcprot(0);//EXAMPLE 21.7
+// Initialisation of Variables
+ma=20;..............//Air flow rate in kg/s
+t1=300;........//Temperature of air entering the turbine in K
+t3=1000;............//Temperature before expansion in turbine in K
+rp=4;...............//Pressure ratio
+cp=1;.............//Specific heat at constant pressure in kJ/kgK
+ga=1.4;........//Ratio of specific heats
+//Calculations
+t2=t1*((rp)^((ga-1)/ga));...............//Temperature of air after compression in K
+t4=t3-t2+t1;............//Temperature after expansion in turbine in K
+prlp=rp/((t3/t4)^(ga/(ga-1)));.............//Pressure ratio of low pressure turbine
+disp(prlp,"Pressure ratio of low pressure turbine:")
+t5=t4/((prlp)^((ga-1)/ga));............//Temperature of the exhaust from the unit in K
+disp(t5,"Temperature of the exhaust from the unit in K:")
+
diff --git a/1226/CH21/EX21.8/EX21_8.jpg b/1226/CH21/EX21.8/EX21_8.jpg
new file mode 100755
index 000000000..e44e230fc
--- /dev/null
+++ b/1226/CH21/EX21.8/EX21_8.jpg
Binary files differ
diff --git a/1226/CH21/EX21.8/EX21_8.sce b/1226/CH21/EX21.8/EX21_8.sce
new file mode 100755
index 000000000..12f09f1b1
--- /dev/null
+++ b/1226/CH21/EX21.8/EX21_8.sce
@@ -0,0 +1,22 @@
+clc;funcprot(0);//EXAMPLE 21.8
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=300;........//Temperature of air entering the turbine in K
+t21=490;........//Actual temperature of air after compression in K
+t3=1000;............//Temperature before expansion in turbine in K
+rp=5;.............//Pressure ratio
+etac=0.8;....//Efficiency of compressor
+etat=0.8;.....//Efficiency of turbine
+ga=1.4;........//Ratio of specific heats
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+//Calculations
+t4=t3/((rp)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+t5=((t41-t21)*etac)+t21;...........//Temperature of the exhaust from the unit in K
+wc=cp*(t21-t1);.............//Work consumed by compressor in kJ/kg
+wt=cp*(t3-t41);........//Work done by turbine in kJ/kg
+qs=cp*(t3-t5);..........//Heat supplied in kJ/kg
+etac=(wt-wc)/qs;.........//Cycle efficiency
+disp(etac*100,"Cycle efficiency in %:")
+
+
diff --git a/1226/CH21/EX21.9/EX21_9.jpg b/1226/CH21/EX21.9/EX21_9.jpg
new file mode 100755
index 000000000..185861ab2
--- /dev/null
+++ b/1226/CH21/EX21.9/EX21_9.jpg
Binary files differ
diff --git a/1226/CH21/EX21.9/EX21_9.sce b/1226/CH21/EX21.9/EX21_9.sce
new file mode 100755
index 000000000..67d58dc7f
--- /dev/null
+++ b/1226/CH21/EX21.9/EX21_9.sce
@@ -0,0 +1,30 @@
+clc;funcprot(0);//EXAMPLE 21.9
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=288;........//Temperature of air entering the turbine in K
+p2=8;.........//Pressure of air after compression in bar
+t3=1173;.............//Temperature before expansion in turbine in K
+etac=0.76;....//Efficiency of compressor
+etat=0.86;.....//Efficiency of turbine
+ma=23;.........//Quantity of air circulation in kg/s
+ga=1.4;........//Ratio of specific heats for compression
+gag=1.34;........//Ratio of specific heats for expansion
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+cpg=1.128;.............//Specific heat at constant pressure in kJ/kgK
+C=4200;.............//Calorific value of fuel in kJ/kg
+etamech=0.95;........//Mechanical efficiency
+etagen=0.96;.........//Generator efficiency
+//Calculations
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+p4=p1;p3=p2;.............//Isobaric processes
+t4=t3*((p4/p3)^((gag-1)/gag));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wc=cp*(t21-t1);................//Work dony by compressor
+m1=(wc)/(cpg*(t3-t41));.............//Flow through compressor turbine in kg
+m2=1-m1;..............//Flow through power turbine in kg
+wpt=m2*(cpg*(t3-t41));.........//turbine work in kJ/kg
+P=ma*wpt*etamech*etagen;.........//Power output in kW
+qi=cpg*t3-cp*t21;.............//Input heat in kJ/kg of air
+etath=wpt/qi;.............//Thermal efficiency of power turbine
+disp(etath*100,"Thermal efficiency of power turbine in %:")