summaryrefslogtreecommitdiff
path: root/1172/CH3
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1172/CH3
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1172/CH3')
-rwxr-xr-x1172/CH3/EX3.1/3_1.txt5
-rwxr-xr-x1172/CH3/EX3.1/Example3_1.sce11
-rwxr-xr-x1172/CH3/EX3.10.1/3_10a.txt5
-rwxr-xr-x1172/CH3/EX3.10.1/Example3_10a.sce11
-rwxr-xr-x1172/CH3/EX3.10.2/3_10b.txt5
-rwxr-xr-x1172/CH3/EX3.10.2/Example3_10b.sce12
-rwxr-xr-x1172/CH3/EX3.11/3_11.txt5
-rwxr-xr-x1172/CH3/EX3.11/Example3_11.sce15
-rwxr-xr-x1172/CH3/EX3.12/3_12.txt5
-rwxr-xr-x1172/CH3/EX3.12/Example3_12.sce11
-rwxr-xr-x1172/CH3/EX3.13/3_13.txt5
-rwxr-xr-x1172/CH3/EX3.13/Example3_13.sce14
-rwxr-xr-x1172/CH3/EX3.14/3_14.txt11
-rwxr-xr-x1172/CH3/EX3.14/Example3_14.sce11
-rwxr-xr-x1172/CH3/EX3.15/3_15.txt7
-rwxr-xr-x1172/CH3/EX3.15/Example3_15.sce12
-rwxr-xr-x1172/CH3/EX3.16.1/3_16a.txt6
-rwxr-xr-x1172/CH3/EX3.16.1/Example3_16a.sce11
-rwxr-xr-x1172/CH3/EX3.16.2/3_16b.txt5
-rwxr-xr-x1172/CH3/EX3.16.2/Example3_16b.sce11
-rwxr-xr-x1172/CH3/EX3.17/3_17.txt6
-rwxr-xr-x1172/CH3/EX3.17/Example3_17.sce10
-rwxr-xr-x1172/CH3/EX3.19.1/3_19a.txt6
-rwxr-xr-x1172/CH3/EX3.19.1/Example3_19a.sce14
-rwxr-xr-x1172/CH3/EX3.19.2/3_19b.txt5
-rwxr-xr-x1172/CH3/EX3.19.2/Example3_19b.sce11
-rwxr-xr-x1172/CH3/EX3.2/3_2.txt5
-rwxr-xr-x1172/CH3/EX3.2/Example3_2.sce11
-rwxr-xr-x1172/CH3/EX3.20/3_20.txt5
-rwxr-xr-x1172/CH3/EX3.20/Example3_20.sce15
-rwxr-xr-x1172/CH3/EX3.21/3_21.txt5
-rwxr-xr-x1172/CH3/EX3.21/Example3_21.sce14
-rwxr-xr-x1172/CH3/EX3.22/3_22.txt16
-rwxr-xr-x1172/CH3/EX3.22/Example3_22.sce24
-rwxr-xr-x1172/CH3/EX3.3/3_3.txt5
-rwxr-xr-x1172/CH3/EX3.3/Example3_3.sce11
-rwxr-xr-x1172/CH3/EX3.4/3_4.txt5
-rwxr-xr-x1172/CH3/EX3.4/Example3_4.sce13
-rwxr-xr-x1172/CH3/EX3.5/3_5.txt5
-rwxr-xr-x1172/CH3/EX3.5/Example3_5.sce13
-rwxr-xr-x1172/CH3/EX3.6/3_6.txt5
-rwxr-xr-x1172/CH3/EX3.6/Example3_6.sce12
-rwxr-xr-x1172/CH3/EX3.7/3_7.txt7
-rwxr-xr-x1172/CH3/EX3.7/Example3_7.sce14
-rwxr-xr-x1172/CH3/EX3.8.1/3_8a.txt4
-rwxr-xr-x1172/CH3/EX3.8.1/Example3_8a.sce17
-rwxr-xr-x1172/CH3/EX3.8.2/3_8b.txt4
-rwxr-xr-x1172/CH3/EX3.8.2/Example3_8b.sce16
-rwxr-xr-x1172/CH3/EX3.9/3_9.txt5
-rwxr-xr-x1172/CH3/EX3.9/Example3_9.sce12
50 files changed, 473 insertions, 0 deletions
diff --git a/1172/CH3/EX3.1/3_1.txt b/1172/CH3/EX3.1/3_1.txt
new file mode 100755
index 000000000..1c827e44e
--- /dev/null
+++ b/1172/CH3/EX3.1/3_1.txt
@@ -0,0 +1,5 @@
+
+ # Problem 1 #
+Standard formula Used
+ ( 1/2)*m*v^2 = h*nu - phi
+ Maximum velocity of photoelectron can be 1.211060e+06 m/s..
diff --git a/1172/CH3/EX3.1/Example3_1.sce b/1172/CH3/EX3.1/Example3_1.sce
new file mode 100755
index 000000000..dab903feb
--- /dev/null
+++ b/1172/CH3/EX3.1/Example3_1.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+h = 6.6e-34 // plank's constant
+nu = 2e15 // frequency in Hz
+phi = 6.72e-19
+m = 9e-31
+//Sample Problem 1 Page No. 135
+printf("\n\n\n # Problem 1 # \n")
+printf("Standard formula Used \n ( 1/2)*m*v^2 = h*nu - phi")
+v = sqrt ((h * nu)/ m ) //calculation of maximum velocity of photoelectron
+printf("\n Maximum velocity of photoelectron can be %e m/s.. ", v)
diff --git a/1172/CH3/EX3.10.1/3_10a.txt b/1172/CH3/EX3.10.1/3_10a.txt
new file mode 100755
index 000000000..cde67caf9
--- /dev/null
+++ b/1172/CH3/EX3.10.1/3_10a.txt
@@ -0,0 +1,5 @@
+ # Problem 10 a #
+
+ Standard formula Used
+ 2 * d * sin(theta) = n * lambda
+ Separation between adjacent layers of crystals is 2.983165 angstrom.
diff --git a/1172/CH3/EX3.10.1/Example3_10a.sce b/1172/CH3/EX3.10.1/Example3_10a.sce
new file mode 100755
index 000000000..01cdabbb5
--- /dev/null
+++ b/1172/CH3/EX3.10.1/Example3_10a.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+lambda = 0.52 // wavelength in angstrom
+theta = 5 // in degree
+n = 1 // order of brags reflection
+//Sample Problem 10 a Page No. 139
+printf("\n\n\n # Problem 10 a # \n")
+printf("\n Standard formula Used \n 2 * d * sin(theta) = n * lambda ")
+d = n * lambda / (2 * sin (theta * %pi / 180))
+//calculation of separation between adjacent layers of crystals
+printf ("\n Separation between adjacent layers of crystals is %f angstrom. ", d)
diff --git a/1172/CH3/EX3.10.2/3_10b.txt b/1172/CH3/EX3.10.2/3_10b.txt
new file mode 100755
index 000000000..f6ea9e9e0
--- /dev/null
+++ b/1172/CH3/EX3.10.2/3_10b.txt
@@ -0,0 +1,5 @@
+ # Problem 10b #
+
+ Standard formula Used
+ 2 * d * sin(theta) = n * lambda
+ Angle for secondary maxima is 10.
diff --git a/1172/CH3/EX3.10.2/Example3_10b.sce b/1172/CH3/EX3.10.2/Example3_10b.sce
new file mode 100755
index 000000000..585b9c0cb
--- /dev/null
+++ b/1172/CH3/EX3.10.2/Example3_10b.sce
@@ -0,0 +1,12 @@
+clc
+//Given that
+n = 2 // order
+lambda = 5.2e-11 // wavelength in Angstrom
+d = 2.98e-10 // interatomic separation in Angstrom
+//Sample Problem 10b page No. 139
+printf("\n\n\n # Problem 10b # \n")
+printf("\n Standard formula Used \n 2 * d * sin(theta) = n * lambda ")
+theta_rad = asin ( (n * lambda) / ( 2 * d)) //calculation of angle for secondary maxima in radian
+theta_deg = theta_rad * 180 / %pi //calculation of angle for secondary maxima in degree
+printf ("\n Angle for secondary maxima is %d. ", theta_deg )
+
diff --git a/1172/CH3/EX3.11/3_11.txt b/1172/CH3/EX3.11/3_11.txt
new file mode 100755
index 000000000..64981fe94
--- /dev/null
+++ b/1172/CH3/EX3.11/3_11.txt
@@ -0,0 +1,5 @@
+# Problem 11 #
+
+ Standard formula Used
+ delta_lambda = h * (1 - cos (theta )) / ( m_e * c)
+ Frequency after scattering is 2.541919e+19 Hz. \ No newline at end of file
diff --git a/1172/CH3/EX3.11/Example3_11.sce b/1172/CH3/EX3.11/Example3_11.sce
new file mode 100755
index 000000000..65ef169d6
--- /dev/null
+++ b/1172/CH3/EX3.11/Example3_11.sce
@@ -0,0 +1,15 @@
+clc
+//Given that
+nu = 3.2e19 // frequency in hartz
+theta = 90 // angle of scattered photon in degree
+m_e = 9.1e-31 // mass of electron in Kg
+c = 3e8 // speed of light in m/s
+h = 6.626e-34 // plank's constant
+//Sample Problem 11 Page No. 140
+printf("\n \n\n# Problem 11 # \n")
+printf("\n Standard formula Used \n delta_lambda = h * (1 - cos (theta )) / ( m_e * c)")
+lambda = c / nu//calculation of incident wavelength
+lambda_shift = h *(1 - cos(theta * %pi / 180))/ ( m_e * c) //calculation of shift in wavelength
+lambda1 = lambda + lambda_shift//calculation of wavelength of scattered photon
+nu1 = c / lambda1//calculation of Frequency after scattering
+printf ("\n Frequency after scattering is %e Hz. ", nu1)
diff --git a/1172/CH3/EX3.12/3_12.txt b/1172/CH3/EX3.12/3_12.txt
new file mode 100755
index 000000000..9c058fa4f
--- /dev/null
+++ b/1172/CH3/EX3.12/3_12.txt
@@ -0,0 +1,5 @@
+# Problem 12 #
+
+ Standard formula Used
+ delta_p * delta_x >= h /(2*pi)
+ Uncertainty in momentum is 5.272803e-21 Kg-m/s.
diff --git a/1172/CH3/EX3.12/Example3_12.sce b/1172/CH3/EX3.12/Example3_12.sce
new file mode 100755
index 000000000..0fe6556db
--- /dev/null
+++ b/1172/CH3/EX3.12/Example3_12.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+r = 1e-14 // radius of nucleus of atom in meter
+h = 6.626e-34 // Plank's constant
+//Sample Problem 12 page No. 140
+printf("\n\n\n # Problem 12 # \n")
+printf("\n Standard formula Used \n delta_p * delta_x >= h /(2*pi)")
+del_x = 2 * r //calculation of Uncertainty in position
+del_p = h / (2 * %pi * del_x) //calculation of Uncertainty in momentum
+printf ("\n Uncertainty in momentum is %e Kg-m/s. ", del_p )
+
diff --git a/1172/CH3/EX3.13/3_13.txt b/1172/CH3/EX3.13/3_13.txt
new file mode 100755
index 000000000..d871334ab
--- /dev/null
+++ b/1172/CH3/EX3.13/3_13.txt
@@ -0,0 +1,5 @@
+ # Problem 13 #
+
+ Standard formula Used
+ delta_p * delta_x >= h /(2*pi)
+ Uncertainty in position of electron is 1.923851 mm.
diff --git a/1172/CH3/EX3.13/Example3_13.sce b/1172/CH3/EX3.13/Example3_13.sce
new file mode 100755
index 000000000..cb830a6c7
--- /dev/null
+++ b/1172/CH3/EX3.13/Example3_13.sce
@@ -0,0 +1,14 @@
+clc
+//Given that
+v = 300 // speed of electron in m/s
+accuracy = 1e-4 // accuracy in speed
+h = 6.6e-34 // Plank's constant
+m_e = 9.1e-31 // mass of electron in Kg
+//Sample Problem 13 page No. 140
+printf("\n\n\n # Problem 13 # \n")
+printf("\n Standard formula Used \n delta_p * delta_x >= h /(2*pi)")
+del_p = accuracy * m_e * v //calculation of Uncertainty in momentum
+del_x = h / (4 * %pi * del_p) //calculation of Uncertainty in position
+printf ("\n Uncertainty in position of electron is %f mm. ", del_x*1000 )
+
+
diff --git a/1172/CH3/EX3.14/3_14.txt b/1172/CH3/EX3.14/3_14.txt
new file mode 100755
index 000000000..fd28e4800
--- /dev/null
+++ b/1172/CH3/EX3.14/3_14.txt
@@ -0,0 +1,11 @@
+ # Problem 14 #
+
+ Standard formula Used
+
+ For Balmer Series
+ 1/lambda = R*(1-(1/n)^2)
+
+ For Lyman series
+ 1/lambda = R*((1/2)^2 -(1/n)^2)
+
+Wavelength of first line of Lyman series is 1214.814815 Angstrom.
diff --git a/1172/CH3/EX3.14/Example3_14.sce b/1172/CH3/EX3.14/Example3_14.sce
new file mode 100755
index 000000000..9c3653a2b
--- /dev/null
+++ b/1172/CH3/EX3.14/Example3_14.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+lambda1 = 6560 // wavelength in Angstrom
+n1 = 1 // transition state no
+n2 = 2 // transition state no
+n3 = 3 // transition state no.
+//Sample Problem 14 page No. 141
+printf("\n\n\n # Problem 14 # \n")
+printf("\n Standard formula Used \n\n For Balmer Series \n 1/lambda = R*(1-(1/n)^2) \n\n For Lyman series \n 1/lambda = R*((1/2)^2 -(1/n)^2)")
+lambda2 = (n2^2 * n1^2) *(n3^2 - n2^2) /( (n2^2 - n1^2) * (n3^2 * n2^2)) * lambda1 //calculation of Wavelength of first line of Lyman series
+printf ("\n \nWavelength of first line of Lyman series is %f Angstrom. ", lambda2 )
diff --git a/1172/CH3/EX3.15/3_15.txt b/1172/CH3/EX3.15/3_15.txt
new file mode 100755
index 000000000..537c797fd
--- /dev/null
+++ b/1172/CH3/EX3.15/3_15.txt
@@ -0,0 +1,7 @@
+
+ # Problem 15 #
+
+ Standard formula Used
+ f = sqrt(k / m )
+ U = 1/2* h * nu
+ Zero point energy of a linear harmonic oscillator is 1.174408e-32 J.
diff --git a/1172/CH3/EX3.15/Example3_15.sce b/1172/CH3/EX3.15/Example3_15.sce
new file mode 100755
index 000000000..0f4573ed3
--- /dev/null
+++ b/1172/CH3/EX3.15/Example3_15.sce
@@ -0,0 +1,12 @@
+clc
+//Given that
+m = 2e-3 // mass of linear harmonic oscillator in kg
+k = 100 // spring constant in N/m
+h = 6.6e-34 // Plank's constant
+//Sample Problem 15 page No. 142
+printf("\n\n\n # Problem 15 # \n")
+printf("\n Standard formula Used \n f = sqrt(k / m ) \n U = 1/2* h * nu ")
+ nu = sqrt(k / m ) / (2 * %pi) //calculation of frequency of linear harmonic oscillator
+U = 1/2* h * nu //calculation of Zero point energy of a linear harmonic oscillator
+printf ("\n Zero point energy of a linear harmonic oscillator is %e J.", U )
+
diff --git a/1172/CH3/EX3.16.1/3_16a.txt b/1172/CH3/EX3.16.1/3_16a.txt
new file mode 100755
index 000000000..d908530d0
--- /dev/null
+++ b/1172/CH3/EX3.16.1/3_16a.txt
@@ -0,0 +1,6 @@
+
+ # Problem 16a #
+
+ Standard formula Used
+ For Lyman series 1/lambda = R*((1/2) ^2 - (1/n) ^2)
+ Wavelength of first line of Lyman series is 1215.436038 Angstrom.
diff --git a/1172/CH3/EX3.16.1/Example3_16a.sce b/1172/CH3/EX3.16.1/Example3_16a.sce
new file mode 100755
index 000000000..93ba623b5
--- /dev/null
+++ b/1172/CH3/EX3.16.1/Example3_16a.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+R = 1.097 // Rydberg’s constant
+n1 = 1 // transition state no
+n2 = 2 // transition state no
+//Sample Problem 16a page No. 142
+printf("\n\n\n # Problem 16a # \n")
+printf ("\n Standard formula Used \n For Lyman series 1/lambda = R*((1/2) ^2 - (1/n) ^2)")
+nu1 = R * (n2^2 - n1^2) / (n1^2 * n2^2) //calculation of frequency of first line of Lyman series
+lambda1 = 1/ nu1//calculation of Wavelength of first line of Lyman series
+printf ("\n Wavelength of first line of Lyman series is %f Angstrom. ", lambda1 *1000)
diff --git a/1172/CH3/EX3.16.2/3_16b.txt b/1172/CH3/EX3.16.2/3_16b.txt
new file mode 100755
index 000000000..ce00d1377
--- /dev/null
+++ b/1172/CH3/EX3.16.2/3_16b.txt
@@ -0,0 +1,5 @@
+ # Problem 16b #
+
+ Standard formula Used
+ For Lyman series 1/lambda = R*((1/2)^2 -(1/n)^2)
+ Wavelength of first line of Lyman series is 1025 Angstrom.
diff --git a/1172/CH3/EX3.16.2/Example3_16b.sce b/1172/CH3/EX3.16.2/Example3_16b.sce
new file mode 100755
index 000000000..4151748f2
--- /dev/null
+++ b/1172/CH3/EX3.16.2/Example3_16b.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+R = 1.097 // Rydberg’s constant
+n1 = 1 // transition state no
+n2 = 3 // transition state no
+//Sample Problem 16b page No. 142
+printf("\n\n\n # Problem 16b # \n")
+printf("\n Standard formula Used \n For Lyman series 1/lambda = R*((1/2)^2 -(1/n)^2)")
+nu1 = R * (n2^2 - n1^2) / (n1^2 * n2^2) //calculation of frequency of first line of Lyman series
+lambda1 = 1/ nu1 //calculation of Wavelength of first line of Lyman series
+printf ("\n Wavelength of second line of Lyman series is %d Angstrom. ", lambda1 *1000 )
diff --git a/1172/CH3/EX3.17/3_17.txt b/1172/CH3/EX3.17/3_17.txt
new file mode 100755
index 000000000..dd82ea421
--- /dev/null
+++ b/1172/CH3/EX3.17/3_17.txt
@@ -0,0 +1,6 @@
+
+ # Problem 17 #
+
+ Standard formula Used
+ lambda * T = constant
+ Blackbody will emit wavelength 1.4e-5 cm at 20727 K.
diff --git a/1172/CH3/EX3.17/Example3_17.sce b/1172/CH3/EX3.17/Example3_17.sce
new file mode 100755
index 000000000..2a70104c9
--- /dev/null
+++ b/1172/CH3/EX3.17/Example3_17.sce
@@ -0,0 +1,10 @@
+clc
+//Given that
+lambda1 = 4700 // wavelength in Angstrom
+lambda2 = 1.4e-5//wavelength in cm
+temp1 = 6174 // temperature of a black of in kelvin
+//Sample Problem 17 page No. 143
+printf("\n\n\n # Problem 17 # \n")
+printf("\n Standard formula Used \n lambda * T = constant")
+temp2 = lambda1 * temp1 / (lambda2 * 1e8) //calculation of temperature
+printf ("\n Blackbody will emit wavelength 1.4e-5 cm at %d K.", temp2 )
diff --git a/1172/CH3/EX3.19.1/3_19a.txt b/1172/CH3/EX3.19.1/3_19a.txt
new file mode 100755
index 000000000..c97198940
--- /dev/null
+++ b/1172/CH3/EX3.19.1/3_19a.txt
@@ -0,0 +1,6 @@
+
+ # Problem 19a #
+
+ Standard formula Used
+ delta_lambda = h * (1 - cos (theta )) / ( m_e * c)
+ Change in frequency is 0.024259 Hz. \ No newline at end of file
diff --git a/1172/CH3/EX3.19.1/Example3_19a.sce b/1172/CH3/EX3.19.1/Example3_19a.sce
new file mode 100755
index 000000000..d691e25fa
--- /dev/null
+++ b/1172/CH3/EX3.19.1/Example3_19a.sce
@@ -0,0 +1,14 @@
+clc
+//Given that
+lambda = 1 // wavelength in Angstrom
+theta = 90 // angle of scattered photon in degree
+m_e = 9.11e-31 // mass of electron in Kg
+c = 3e8 // speed of light in m/s
+h = 6.63e-34 // plank's constant
+//Sample Problem 19a page No. 144
+printf("\n\n\n # Problem 19a # \n")
+printf("\n Standard formula Used \n delta_lambda = h * (1 - cos (theta )) / ( m_e * c)")
+lambda_shift = h *(1 - cos(theta * %pi / 180))/ ( m_e * c) //calculation of Change in frequency
+printf ("\n Change in frequency is %f Hz. ", lambda_shift * 1e10)
+
+
diff --git a/1172/CH3/EX3.19.2/3_19b.txt b/1172/CH3/EX3.19.2/3_19b.txt
new file mode 100755
index 000000000..77aa036a6
--- /dev/null
+++ b/1172/CH3/EX3.19.2/3_19b.txt
@@ -0,0 +1,5 @@
+ # Problem 19b #
+
+ Standard formula Used
+ E= h *(nu1 – nu2)
+ Kinetic energy imparted to recoiling electron is 294 eV.
diff --git a/1172/CH3/EX3.19.2/Example3_19b.sce b/1172/CH3/EX3.19.2/Example3_19b.sce
new file mode 100755
index 000000000..4a5ce27ba
--- /dev/null
+++ b/1172/CH3/EX3.19.2/Example3_19b.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+lambda1 = 1 // wavelength in Angstrom
+lambda2 = 1.0243 // wavelength in Angstrom
+c = 3e8 // speed of light in m/s
+h = 6.63e-34 // plank's constant
+//Sample Problem 19b page No. 144
+printf("\n\n\n # Problem 19b # \n")
+printf("\n Standard formula Used \n E= h *(nu1 – nu2)")
+K = h * c * (( lambda2 - lambda1 )/ (lambda1 * lambda2 )) *(10e9 / 1.6e-19) //calculation of Kinetic energy imparted to recoiling
+printf ("\n Kinetic energy imparted to recoiling electron is %d eV.", K)
diff --git a/1172/CH3/EX3.2/3_2.txt b/1172/CH3/EX3.2/3_2.txt
new file mode 100755
index 000000000..fff0eefec
--- /dev/null
+++ b/1172/CH3/EX3.2/3_2.txt
@@ -0,0 +1,5 @@
+ # Problem 2 #
+
+ Standard formula Used
+ E = h * (nu1 – nu2)
+ Energy of photoelectrons emitted is 1.031250 eV
diff --git a/1172/CH3/EX3.2/Example3_2.sce b/1172/CH3/EX3.2/Example3_2.sce
new file mode 100755
index 000000000..66e00d4e6
--- /dev/null
+++ b/1172/CH3/EX3.2/Example3_2.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+h = 6.6e-34 // plank's constant
+lambda_threshold = 2.4e-7 // threshold wavelength in cm
+lambda = 2e-7 // wavelength of irradicated light in photo emmission
+c = 3e8
+//Sample Problem 2 Page No. 135
+printf("\n # Problem 2 # \n")
+printf("\n Standard formula Used \n E = h * (nu1 – nu2)")
+E = h * c * ((lambda_threshold - lambda)/(lambda *lambda_threshold))/1.6e-19 // calculation of nergy of photoelectrons
+printf("\n Energy of photoelectrons emitted is %f eV", E)
diff --git a/1172/CH3/EX3.20/3_20.txt b/1172/CH3/EX3.20/3_20.txt
new file mode 100755
index 000000000..4252d9539
--- /dev/null
+++ b/1172/CH3/EX3.20/3_20.txt
@@ -0,0 +1,5 @@
+ # Problem 20 #
+
+ Standard formula Used
+ delta_lambda = h * (1 - cos (theta )) / ( m_e * c)
+ wavelength of scattered photon is 1.049186e-03 Angstrom.
diff --git a/1172/CH3/EX3.20/Example3_20.sce b/1172/CH3/EX3.20/Example3_20.sce
new file mode 100755
index 000000000..938d91570
--- /dev/null
+++ b/1172/CH3/EX3.20/Example3_20.sce
@@ -0,0 +1,15 @@
+clc
+//Given that
+theta = 90 // angle of scattered photon in degree
+E_rest = 938.3 // rest mass energy of a proton in MeV
+E = 12// energy of scattered proton in Mev
+c = 3e8 // speed of light in m/s
+h = 6.63e-34 // plank's constant
+//Sample Problem 20 page No. 145
+printf("\n\n\n # Problem 20 # \n")
+printf("\n Standard formula Used \n delta_lambda = h * (1 - cos (theta )) / ( m_e * c)")
+lambda = h * c / ( E * 1.6e-13) //calculation of incident wavelength
+lambda1 = lambda + h * c / (E_rest * 1.6e-13) //calculation of wavelength of scattered photon
+printf ("\n wavelength of scattered photon is %e Angstrom. ", lambda1 * 1e10)
+
+
diff --git a/1172/CH3/EX3.21/3_21.txt b/1172/CH3/EX3.21/3_21.txt
new file mode 100755
index 000000000..58e7b0b6c
--- /dev/null
+++ b/1172/CH3/EX3.21/3_21.txt
@@ -0,0 +1,5 @@
+ # Problem 21 #
+
+ Standard formula Used
+ sqrt(nu1)= a*(Z-b)
+ The unknown substance has atomic number 47.
diff --git a/1172/CH3/EX3.21/Example3_21.sce b/1172/CH3/EX3.21/Example3_21.sce
new file mode 100755
index 000000000..dc3334cc6
--- /dev/null
+++ b/1172/CH3/EX3.21/Example3_21.sce
@@ -0,0 +1,14 @@
+clc
+//Given that
+lambda1 = 1.321 // wavelength of L- alpha line for platinum
+lambda2 = 4.174 // wavelength of l - alpha line of unknown substance
+z1= 78// atomic number of platinum
+c = 3e8 // speed of light in m/s
+b = 7.4 // constant for L - alpha line
+//Sample Problem 21 page No. 146
+printf("\n\n\n # Problem 21 # \n")
+printf("\n Standard formula Used \n sqrt(nu1)= a*(Z-b)")
+z2 = b + (z1 - b) * sqrt(lambda1 / lambda2) //calculation of the unknown substance has atomic number
+printf ("\n The unknown substance has atomic number %d. ", z2)
+
+
diff --git a/1172/CH3/EX3.22/3_22.txt b/1172/CH3/EX3.22/3_22.txt
new file mode 100755
index 000000000..6fd3570a2
--- /dev/null
+++ b/1172/CH3/EX3.22/3_22.txt
@@ -0,0 +1,16 @@
+ # Problem 22 #
+
+ Standard formula Used
+ E= h^2 * (n_x^2+n_y^2+n_z^2) / (8*m*L^2)Warning : redefining function: sum . Use funcprot(0) to avoid this message
+
+
+
+ E111 is 112.190934 eV.
+
+ E112 is 224.381868 eV.
+
+ E211 is 224.381868 eV.
+
+ E212 is 336.572802 eV.
+
+ E311 is 411.366758 eV.
diff --git a/1172/CH3/EX3.22/Example3_22.sce b/1172/CH3/EX3.22/Example3_22.sce
new file mode 100755
index 000000000..e9c7d0f74
--- /dev/null
+++ b/1172/CH3/EX3.22/Example3_22.sce
@@ -0,0 +1,24 @@
+clc
+//Given that
+h = 6.6e-34 // plank's constant
+m_e = 9.1e-31 // mass of electron in kg
+L = 1e-10 // length of box of particle in m
+//Sample Problem 22 page No. 146
+printf("\n # Problem 22 # \n")
+printf("\n Standard formula Used \n E= h^2 * (n_x^2+n_y^2+n_z^2) / (8*m*L^2)")
+sum = 0
+n_y = 1
+ for n_x = 1:3
+
+ for n_z = 1:2
+ sum = n_x+n_y+n_z
+ if sum<6 then
+ E = h^2 * (n_x^2+n_y^2+n_z^2)/ (1.6e-19*8*m_e*L^2) // calculation of energy
+ printf("\n \n E%d%d%d is %f eV. ",n_x,n_y,n_z,E)
+ end
+
+
+
+ end
+ end
+
diff --git a/1172/CH3/EX3.3/3_3.txt b/1172/CH3/EX3.3/3_3.txt
new file mode 100755
index 000000000..d79debeab
--- /dev/null
+++ b/1172/CH3/EX3.3/3_3.txt
@@ -0,0 +1,5 @@
+ # Problem 3 #
+
+ Standard formula Used
+ E = h*c/lambda
+ Shortest wavelength emitted is 0.310500 Angstrom.
diff --git a/1172/CH3/EX3.3/Example3_3.sce b/1172/CH3/EX3.3/Example3_3.sce
new file mode 100755
index 000000000..d238a255a
--- /dev/null
+++ b/1172/CH3/EX3.3/Example3_3.sce
@@ -0,0 +1,11 @@
+clc
+//Given that
+applied_voltage = 4e4 // in volt
+h = 6.624e-34 // plank's constant
+c = 3e8 // speed of light
+e = 1.6e-19 // charge on electron
+//Sample Problem 3 Page No. 136
+printf("\n\n\n # Problem 3 # \n")
+printf("\n Standard formula Used \n E = h*c/lambda")
+lambda = h * c / ( e * applied_voltage) *1e10 //calculation of Shortest wavelength emitted
+printf("\n Shortest wavelength emitted is %f Angstrom.", lambda)
diff --git a/1172/CH3/EX3.4/3_4.txt b/1172/CH3/EX3.4/3_4.txt
new file mode 100755
index 000000000..5f45ee3ff
--- /dev/null
+++ b/1172/CH3/EX3.4/3_4.txt
@@ -0,0 +1,5 @@
+ # Problem 4 #
+
+ Standard formula Used
+ E =(1/2)*m *v^2
+ Velocity of moving electron is 1.875229e+07 m/s.
diff --git a/1172/CH3/EX3.4/Example3_4.sce b/1172/CH3/EX3.4/Example3_4.sce
new file mode 100755
index 000000000..0224ffd49
--- /dev/null
+++ b/1172/CH3/EX3.4/Example3_4.sce
@@ -0,0 +1,13 @@
+clc
+//Given that
+E = 1e3 // energy of moving electron in eV
+h = 6.624e-34 // plank's constant
+c = 3e8 // speed of light
+e = 1.6e-19 // charge on electron
+m_e = 9.1e-31
+//Sample Problem 4 Page No. 136
+printf("\n\n\n # Problem 4 # \n")
+printf("\n Standard formula Used \n E =(1/2)*m *v^2")
+v = sqrt(2 * E * 1.6e-19/ m_e) //calculation of Velocity of moving electron
+printf("\n Velocity of moving electron is %e m/s.", v)
+
diff --git a/1172/CH3/EX3.5/3_5.txt b/1172/CH3/EX3.5/3_5.txt
new file mode 100755
index 000000000..88efc0129
--- /dev/null
+++ b/1172/CH3/EX3.5/3_5.txt
@@ -0,0 +1,5 @@
+ # Problem 5 #
+
+ Standard formula Used
+ phi = h * nu
+ Longest wavelength to eject electron is 2070 Angstroms.
diff --git a/1172/CH3/EX3.5/Example3_5.sce b/1172/CH3/EX3.5/Example3_5.sce
new file mode 100755
index 000000000..1593d4077
--- /dev/null
+++ b/1172/CH3/EX3.5/Example3_5.sce
@@ -0,0 +1,13 @@
+clc
+//Given that
+phi = 6 // work function in eV
+h = 6.624e-34 // plank's constant
+c = 3e8 // speed of light
+e = 1.6e-19 // charge on electron
+m_e = 9.1e-31
+//Sample Problem 5 Page No. 137
+printf("\n\n\n # Problem 5 # \n")
+printf("\n Standard formula Used \n phi = h * nu")
+lambda = h * c / (phi * e) * 1e10//calculation of Longest wavelength to eject electron
+printf("\n Longest wavelength to eject electron is %d Angstroms. ", lambda)
+
diff --git a/1172/CH3/EX3.6/3_6.txt b/1172/CH3/EX3.6/3_6.txt
new file mode 100755
index 000000000..0ddd80fb0
--- /dev/null
+++ b/1172/CH3/EX3.6/3_6.txt
@@ -0,0 +1,5 @@
+ # Problem 6 #
+
+ Standard formula Used
+ delta_lambda = h * (1 - cos (theta )) / ( m_e * c)
+ Change in wavelength of electron is 0.024264 Angstrom.
diff --git a/1172/CH3/EX3.6/Example3_6.sce b/1172/CH3/EX3.6/Example3_6.sce
new file mode 100755
index 000000000..0f6211a15
--- /dev/null
+++ b/1172/CH3/EX3.6/Example3_6.sce
@@ -0,0 +1,12 @@
+clc
+//Given that
+theta = %pi/2 // scattering angle of photon
+h = 6.624e-34 // plank's constant
+c = 3e8 // speed of light
+e = 1.6e-19 // charge on electron in coloumb
+m_e = 9.1e-31 // mass of electron in kg
+//Sample Problem 6 Page No. 137
+printf("\n\n\n # Problem 6 # \n")
+printf("\n Standard formula Used \n delta_lambda = h * (1 - cos (theta )) / ( m_e * c)")
+delta_lambda = h * (1 - cos (theta )) /( m_e * c) //calculation of Change in wavelength of electron
+printf("\n Change in wavelength of electron is %f Angstrom. ", delta_lambda*1e10)
diff --git a/1172/CH3/EX3.7/3_7.txt b/1172/CH3/EX3.7/3_7.txt
new file mode 100755
index 000000000..345639212
--- /dev/null
+++ b/1172/CH3/EX3.7/3_7.txt
@@ -0,0 +1,7 @@
+ # Problem 7 #
+
+ Standard formula Used
+ lambda = h / (m * v)
+ de Broglie wavelength of particle is 3.312000e-37 m.
+ Here the de Broglie wavelength is too small to be detected. This wavelength is far smaller than the wavelength of X ray.
+ Hence diffraction experiment with such a stream of particle will not be successful.
diff --git a/1172/CH3/EX3.7/Example3_7.sce b/1172/CH3/EX3.7/Example3_7.sce
new file mode 100755
index 000000000..ec6a7c53a
--- /dev/null
+++ b/1172/CH3/EX3.7/Example3_7.sce
@@ -0,0 +1,14 @@
+clc
+//Given that
+angle = %pi/2 // scattering angle of photon
+h = 6.624e-34 // plank's constant
+v = 2e6 // speed of particle
+e = 1.6e-19 // charge on electron
+m = 1e-3 // mass of particle in kg
+//Sample Problem 7 Page No. 137
+printf("\n\n\n # Problem 7 # \n")
+printf("\n Standard formula Used \n lambda = h / (m * v)")
+lambda = h / (m * v) //calculation of de Broglie wavelength of particle
+printf("\n de Broglie wavelength of particle is %e m.", lambda)
+printf("\n Here the de Broglie wavelength is too small to be detected. This wavelength is far smaller than the wavelength of X ray.\n Hence diffraction experiment with such a stream of particle will not be successful.")
+
diff --git a/1172/CH3/EX3.8.1/3_8a.txt b/1172/CH3/EX3.8.1/3_8a.txt
new file mode 100755
index 000000000..66dbfcb04
--- /dev/null
+++ b/1172/CH3/EX3.8.1/3_8a.txt
@@ -0,0 +1,4 @@
+ # Problem 8a #
+
+ As the threshold wavelength is less than wavelength of incident radiation
+ So electron will not be ejected
diff --git a/1172/CH3/EX3.8.1/Example3_8a.sce b/1172/CH3/EX3.8.1/Example3_8a.sce
new file mode 100755
index 000000000..c9f0577ec
--- /dev/null
+++ b/1172/CH3/EX3.8.1/Example3_8a.sce
@@ -0,0 +1,17 @@
+clc
+//Given that
+lambda = 4.3e-7 // wavelength of light in meter
+phi_Ni = 5 // work function of nickel in eV
+h = 6.624e-34 // plank's constant
+c = 3e8 // speed of light
+m_e = 9.1e-31 // mass of electron in kg
+//Sample Problem 8a Page No. 138
+printf("\n\n\n # Problem 8a # \n")
+lambda_threshold = h * c / (phi_Ni*1e-19) //calculation of longest wavelength required
+if (lambda_threshold < lambda) then
+ printf("\n As the threshold wavelength is less than wavelength of incident radiation \n So electron will not be ejected \n")
+else
+ v = sqrt((2* h * c *(lambda - lambda_threshold)) / (m * lambda_threshold * lambda ))) //calculation of ejected velocity Electron
+ printf("\n As the threshold wavelength is greater than wavelength of incident radiation So electron will be ejected with velocity %e. ",v)
+end
+
diff --git a/1172/CH3/EX3.8.2/3_8b.txt b/1172/CH3/EX3.8.2/3_8b.txt
new file mode 100755
index 000000000..04893291b
--- /dev/null
+++ b/1172/CH3/EX3.8.2/3_8b.txt
@@ -0,0 +1,4 @@
+ # Problem 8b #
+
+ As the threshold wavelength is greater than wavelength of incident radiation So
+ electron will be ejected with velocity 4.548627e+05 m/s.
diff --git a/1172/CH3/EX3.8.2/Example3_8b.sce b/1172/CH3/EX3.8.2/Example3_8b.sce
new file mode 100755
index 000000000..914433ff5
--- /dev/null
+++ b/1172/CH3/EX3.8.2/Example3_8b.sce
@@ -0,0 +1,16 @@
+clc
+//Given that
+lambda = 4.3e-7 // wavelength of light in meter
+phi_K = 2.3 // work function of nickel in eV
+h = 6.624e-34 // plank's constant
+c = 3e8 // speed of light
+m_e = 9.1e-31 // mass of electron in kg
+//Sample Problem 8b Page No. 138
+printf("\n\n\n # Problem 8b # \n")
+lambda_threshold = h * c / (phi_K *1.6e-19) //calculation of longest wavelength required
+if (lambda_threshold < lambda) then
+ printf("As the threshold wavelength is less than wavelength of incident radiation Solectron will not be ejected \n")
+else
+ v = sqrt((2* h * c *( lambda_threshold - lambda)) / (m_e * lambda_threshold * lambda )) //calculation of ejected velocity Electron
+ printf("\n As the threshold wavelength is greater than wavelength of incident radiation So \n electron will be ejected with velocity %e m/s. ",v)
+end
diff --git a/1172/CH3/EX3.9/3_9.txt b/1172/CH3/EX3.9/3_9.txt
new file mode 100755
index 000000000..c05832618
--- /dev/null
+++ b/1172/CH3/EX3.9/3_9.txt
@@ -0,0 +1,5 @@
+ # Problem 9 #
+
+ Standard formula Used
+ 2 * d * sin(theta) = n * lambda
+ Second order brags reflection occurs at 14.700000 degree for the wavelength 0.771424 Angstrom
diff --git a/1172/CH3/EX3.9/Example3_9.sce b/1172/CH3/EX3.9/Example3_9.sce
new file mode 100755
index 000000000..f2e0eebf7
--- /dev/null
+++ b/1172/CH3/EX3.9/Example3_9.sce
@@ -0,0 +1,12 @@
+clc
+//Given that
+d = 3.04 // inter layer separation in Angstrom
+theta = 14.7 // in degree
+n = 2 // order of brags reflection
+//Sample Problem Page No. 139
+printf("\n\n\n # Problem 9 # \n")
+printf("\n Standard formula Used \n 2 * d * sin(theta) = n * lambda")
+lambda = 2 * d * sin( theta * (%pi /180))/ n //calculation of wavelength making second order Braggs reflection
+printf ( " \n Second order brags reflection occurs at %f degree for the wavelength %f Angstrom\n" , theta , lambda)
+
+