diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1133/CH3/EX3.6 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1133/CH3/EX3.6')
-rwxr-xr-x | 1133/CH3/EX3.6/Example3_6.sce | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/1133/CH3/EX3.6/Example3_6.sce b/1133/CH3/EX3.6/Example3_6.sce new file mode 100755 index 000000000..bda6e2179 --- /dev/null +++ b/1133/CH3/EX3.6/Example3_6.sce @@ -0,0 +1,58 @@ +//Example 3.6
+clc
+disp("Step 1: Identify topology")
+disp(" The feedback voltage is applied across R_e1 = 1.5 k-ohm, which is in series with input signal. Hence feedback is voltage series feedback")
+disp("")
+disp("Step 2 and step 3: Find input and output circuit")
+disp(" To find input circuit, set Vo = 0, which gives parallel combination of R_e1 with R_f at E1 as shown in fig.3.47. To find ouput circuit, set I_i = 0 by opening the input node, E1 at emitter of Q1, which gives the series combination of R_f and R_e1 across the output. The resultant circuit is shown in fig.3.47")
+disp("")
+disp("Step 4: Find the open loop voltage gain (Av)")
+rl2=(2.2*57.5)/(2.2+57.5) // in k-ohm
+format(6)
+disp(rl2," R_L2(in k-ohm) = R_c2 || (Rf + R_e1) =")
+disp("Since hoe*R_L2 = 10^-6*2.119 k-ohm = 0.002119 is less than 0.1 we use approximate analysis.")
+disp(" A_i2 = -h_fe = -200")
+disp(" R_i2 = hie = 2 k-ohm")
+av2=(-200*2.119)/2
+disp(av2," A_v2 = A_i2*R_L2 / R_i2 =")
+rl1=(120*2)/(122) // in k-ohm
+disp(rl1," R_L1(in k-ohm) = R_C1 || R_i2 =")
+disp("Since hoe*R_L1 = 10^-6*1.967 = 0.001967 is less than 0.1 we use approximate analysis.")
+disp(" A_i1 = -hfe = -200")
+ri1=2+(201*((1.5*56)/(57.5))) // in k-ohm
+format(7)
+disp(ri1," R_i1(in k-ohm) = hie + (1+hfe)*Re =")
+av1=(-200*1.967)/295.63
+format(5)
+disp(av1,"Therefore, A_v1 = A_i1*R_L1 / R_i1 =")
+disp("The overall gain without feedback is")
+av=-1.33*-211.9
+format(7)
+disp(av," Av = A_v1 * A_v2 =")
+disp("")
+disp("Step 5: Calculate beta")
+beta=1.5/57.5
+format(6)
+disp(beta," beta = Vf / Vo =")
+disp("")
+disp("Step 6: calculate D, A_vf, R_if, R_of")
+d=1+(0.026*281.82)
+disp(d," D = 1 + Av*beta =")
+avf=281.82/8.327
+disp(avf,"Therefore, A_vf = Av / D =")
+ri=(295.63*150)/(295.63+150) // in k-ohm
+format(5)
+disp(ri," Ri(in k-ohm) = R_i1 || R =")
+rif=99.5*8.327 // in k-ohm
+format(7)
+disp(rif," R_if(in k-ohm) = Ri *D =")
+disp(" Ro = 1/hoe = 1 M-ohm")
+rof=((1*10^6)/8.327)*10^-3 // in k-ohm
+format(4)
+disp(rof," R_of(in k-ohm) = Ro / D =")
+ro=(1000*2.119)/(2.119+1000) // in k-ohm
+format(7)
+disp(ro," R''o(in k-ohm) = Ro || R_c2 || (Rf+R_e1) = Ro || R_L2 =")
+rof=(2.1145*10^3)/8.327 // in ohm
+format(4)
+disp(rof," R''_of(in ohm) = R''o / D =")
\ No newline at end of file |