diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1133/CH3/EX3.12 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1133/CH3/EX3.12')
-rwxr-xr-x | 1133/CH3/EX3.12/Example3_12.sce | 41 |
1 files changed, 41 insertions, 0 deletions
diff --git a/1133/CH3/EX3.12/Example3_12.sce b/1133/CH3/EX3.12/Example3_12.sce new file mode 100755 index 000000000..296cfa3b1 --- /dev/null +++ b/1133/CH3/EX3.12/Example3_12.sce @@ -0,0 +1,41 @@ +//Example 3.12
+clc
+disp("Step 1: Identify topology")
+disp(" The feebdack is given from emitter of Q2 to the base of Q2. If Io = 0 then feedback current through 5 K register is zero, hence it is current sampling. As feedback signal is mixed in shunt with input, the amplifier is current shunt feedback amplifier.")
+disp("")
+disp("Step 2 and Step 3: Find input and output ")
+disp(" The input circuit of the amplifier without feedback is obtained by opening the output loop at the emitter of Q2(Io = 0). This places R''(5 K) in series with Re from base to emitter of Q1. The output circuit is found by shorting the input node, i.e. making Vi = 0. This places R'' (5 K) in parallel with Re. The resultant equivalent circuit is shown in fig.3.59 ")
+disp("")
+disp("Step 4: Find open circuit transfer gain.")
+disp(" A_I = Io / Is = -Ic/I_b2 * I_b2/I_c1 * I_c1/I_b1 * I_b1/Is")
+disp("We know that -I_c2 / I_b2 = A_i2 = -hfe = -50 and")
+disp(" -I_c1 / I_b1 = A_i1 = -hfe = 50")
+disp(" I_c1 / I_b1 = 50")
+disp("Looking at fig.3.59 we can write,")
+disp(" I_b2 / I_c1 = -R_c1 / R_c1+R_i2 ")
+ri2=1.5+(51*((5*0.5)/(5.5))) // in k-ohm
+format(8)
+disp(ri2,"where R_i2(in k-ohm) = h_ie + (1+h_fe)*(R_e2||R'') =")
+x1=-2/(2+24.6818)
+disp(x1," I_b2 / I_c1 =")
+disp(" I_b1 / Is = R / R+R_i1 where R = Rs||(R''+R_e2) ")
+r=((1*5.5)/(1+5.5))*10^3 // in ohm
+format(9)
+disp(r,"Therefore, R(in ohm) =")
+disp("and R_i1 = h_ie + (1+h_fe)*R_e1 = 16.8 k-ohm")
+x1=846.1538/(846.1538+(16.8*10^3))
+format(8)
+disp(x1,"Therefore, I_b1 / Is =")
+ai=50*0.07495*50*0.04795
+format(7)
+disp(ai," A_I =")
+disp("")
+disp("Step 5: Calculate beta")
+beta=500/(500+(5*10^3))
+disp(beta," beta = If / Io = R_e2 / R_e2|R'' =")
+disp("")
+disp("Step 6: Calculate D, A_If")
+d=1+(0.0909*8.9848)
+disp(d," D = 1 + A_I*beta =")
+aif=8.9848/1.8168
+disp(aif," A_If = A_I / D =")
|