diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1133/CH3/EX3.10 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1133/CH3/EX3.10')
-rwxr-xr-x | 1133/CH3/EX3.10/Example3_10.sce | 48 |
1 files changed, 48 insertions, 0 deletions
diff --git a/1133/CH3/EX3.10/Example3_10.sce b/1133/CH3/EX3.10/Example3_10.sce new file mode 100755 index 000000000..f14665ea1 --- /dev/null +++ b/1133/CH3/EX3.10/Example3_10.sce @@ -0,0 +1,48 @@ +//Example 3.10
+disp("Step 1: Identify topology")
+disp(" By shorting output voltage (Vo = 0), feedback voltage Vf becomes zero and hence it is voltage sampling. The feedback voltage is applied in series with the input voltage hence the topology is voltage series feedback.")
+disp("")
+disp("Step 2 and Step 3: Find input and output circuit.")
+disp(" To find input circuit, set Vo = 0. This places the parallel combination of resistor 10 K and 300 ohm at first source. To find output circuit, set Ii = 0. This places the resistor 10K and 300 ohm in series across the output. The resultant circuit is shown in fig.3.54.")
+disp("")
+disp("Step 4: Replace FET with its equivalent circuit as shown in fig.3.55.")
+disp("")
+disp("Step 5: Find open loop transfer gain.")
+disp(" Av = Vo / Vs = A_v1 * A_v2")
+disp(" A_v2 = -u*R_L2 / R_L2+r_d")
+rl2=(10.3*22)/(10.3+22) // in k-ohm
+format(3)
+disp(rl2,"where R_L2(in k-ohm) =")
+av2=(-50*7)/17
+format(6)
+disp(av2," A_v2 =")
+disp(" A_v1 = u*R_Deff / r_d+R_Deff+(1+u)*R_seff")
+rdeff=(22*1000)/(22+1000) // in k-ohm
+disp(rdeff," R_Deff(in k-ohm) = R_D || R_G2 =")
+disp(" R_seff = 330 || 10K")
+av1=(-50*21.53)/(10+21.53+(51*((0.33*10)/(10+0.33))))
+disp(av1,"Therefore, A_v1 =")
+av=-20.59*-22.51
+disp(av," Overall Av = A_v1 * A_v2 =")
+disp("")
+disp("Step 6: Calculate beta")
+beta=330/(330+10000)
+format(7)
+disp(beta," beta = Vf / Vo = Rs / Rs+Rf =")
+disp("")
+disp("step 7: Calculate D, A_vf, R_if, R''_of")
+d=1+(0.0319*463.5)
+disp(d," D = 1 + Av*beta =")
+avf=463.5/15.785
+format(6)
+disp(avf," A_vf = Av / D =")
+disp("Ri = R_G = 1 M-ohm")
+rif=15.785
+format(7)
+disp(rif," R_if(in k-ohm) = Ri * D =")
+ro=(10*7)/(10+7) // in k-ohm
+format(6)
+disp(ro," R''o(in k-ohm) = rd || R_L2 =")
+rof=(4.118*10^3)/15.785 // in ohm
+format(4)
+disp(rof," R''_of(in ohm) = R''o / D =")
|