summaryrefslogtreecommitdiff
path: root/1092/CH9/EX9.10
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1092/CH9/EX9.10
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1092/CH9/EX9.10')
-rwxr-xr-x1092/CH9/EX9.10/Example9_10.sce64
1 files changed, 64 insertions, 0 deletions
diff --git a/1092/CH9/EX9.10/Example9_10.sce b/1092/CH9/EX9.10/Example9_10.sce
new file mode 100755
index 000000000..6a5e01bd5
--- /dev/null
+++ b/1092/CH9/EX9.10/Example9_10.sce
@@ -0,0 +1,64 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 9: POLYPHASE INDUCTION (ASYNCHRONOUS) DYNAMOS
+// Example 9-10
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+P = 4 ; // Number of poles in WRIM
+f = 60 ; // Frequency in Hz
+V = 220 ; // Line voltage in volt
+V_p = 220 ; // Phase voltage in volt (delta connection)
+hp_WRIM = 1 ; // Power rating of WRIM in hp
+S_r = 1740 ; // Full-load rated speed in rpm
+R_r = 0.3 ; // rotor resistance per phase in ohm/phase
+R_x = 0.7 ; // Added resistance in ohm/phase
+X_lr =1 ; // Locked rotor reactance in ohm
+
+// Calculations
+S = (120*f)/P ; // Speed in rpm of the rotating magnetic field
+// case a
+E_lr = V_p / 4 ; // Locked-rotor voltage per phase
+
+// case b
+s = ( S - S_r)/S ; // slip
+I_r = E_lr / sqrt( (R_r/s)^2 + (X_lr)^2 ); // Rotor current per phase at rated speed
+
+// case c
+P_in = ((I_r)^2 * R_r)/s ; // Rated rotor power input per phase
+
+// case d
+P_RL = (I_r)^2 * R_r ; // Rated copper loss per phase
+
+// case e
+P_d_W = P_in - P_RL ; // Rotor power developed per phase in W
+P_d_hp = P_d_W/746 ; // Rotor power developed per phase in hp
+
+// case f
+hp = P_d_hp ; // Rotor power developed per phase in hp
+T_d1 = (hp*5252)/S_r ; // Rotor torque developed in lb-ft per phase by method 1
+T_d2 = 7.04*(P_in/S) ; // Rotor torque developed in lb-ft per phase by method 2
+
+T_dm = 3*T_d1 ; // Total rotor torque in lb-ft
+
+// Display the results
+disp("Example 9-10 Solution : ");
+printf(" \n a: Locked-rotor voltage per phase : \n E_lr = %d V \n ",E_lr);
+
+printf(" \n b: slip : \n s = %.2f \n",s);
+printf(" \n Rotor current per phase at rated speed:\n I_r = %.3f A/phase \n ",I_r);
+
+printf(" \n c: Rated rotor power input per phase :\n P_in = %d W/phase \n ",P_in);
+
+printf(" \n d: Rated copper loss per phase : \n P_RL = %.2f W \n ",P_RL);
+
+printf(" \n e: Rotor power developed per phase in W :\n P_d = %.1f W/phase ",P_d_W);
+printf(" \n\n Rotor power developed per phase in hp :\n P_d = %.2f hp/phase \n ",P_d_hp);
+
+printf(" \n f: Rotor torque developed in lb-ft per phase :\n T_d = %.1f lb-ft (method 1)",T_d1);
+printf(" \n\n T_d = %.1f lb-ft (method 2)",T_d2);
+printf(" \n\n Total rotor torque : \n T_dm = %.1f lb-ft )\n ",T_dm);