summaryrefslogtreecommitdiff
path: root/1092/CH8/EX8.4/Example8_4.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1092/CH8/EX8.4/Example8_4.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1092/CH8/EX8.4/Example8_4.sce')
-rwxr-xr-x1092/CH8/EX8.4/Example8_4.sce90
1 files changed, 90 insertions, 0 deletions
diff --git a/1092/CH8/EX8.4/Example8_4.sce b/1092/CH8/EX8.4/Example8_4.sce
new file mode 100755
index 000000000..d3af817aa
--- /dev/null
+++ b/1092/CH8/EX8.4/Example8_4.sce
@@ -0,0 +1,90 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 8: AC DYNAMO TORQUE RELATIONS - SYNCHRONOUS MOTORS
+// Example 8-4
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// Y-connected synchronous dynamo
+P = 2 ; // No. of poles
+hp = 1000 ; // power rating of the synchronous motor in hp
+V_L = 6000 ; // Line voltage in volt
+f = 60 ; // Frequency in Hz
+R_a = 0.52 ; // Effective armature resistance in ohm
+X_s = 4.2 ; // Synchronous reactance in ohm
+P_t = 811 ; // Input power in kW
+PF = 0.8 ; // Power factor leading
+
+// Calculations
+V_p = V_L / sqrt(3); // Phase voltage in volt
+
+// case a
+cos_theta = PF ; // Power factor leading
+I_L = (P_t*1000) / ( sqrt(3) * V_L * cos_theta); // Line armature current in A
+I_ap = I_L ; // Phase armature current in A
+
+// case b
+Z_p = R_a + %i * X_s ; // Impedance per phase in ohm
+Z_p_m = abs(Z_p);//Z_p_m=magnitude of Z_p in ohm
+Z_p_a = atan(imag(Z_p) /real(Z_p))*180/%pi;//Z_p_a=phase angle of Z_p in degrees
+
+// case c
+Ia_Zp = I_L * Z_p_m ;
+E_r = Ia_Zp ;
+
+// case d
+theta = acosd(0.8); // Power factor angle in degrees
+
+// case e
+funcprot(0); // Use to avoid this message "Warning : redefining function: beta" .
+beta = Z_p_a ; //
+deba = beta + theta // Difference angle at 0.8 leading PF in degrees
+
+// case f
+// Generated voltage/phase in volt
+E_gp_f = sqrt( (E_r)^2 + (V_p)^2 - 2*E_r*V_p*cosd(deba) );
+
+// case g
+// Generated voltage/phase in volt
+E_gp_g = ( V_p + Ia_Zp * cosd(180-deba) ) + %i * ( Ia_Zp * sind(180-deba) );
+E_gp_g_m = abs(E_gp_g);//E_gp_g_m=magnitude of E_gp_g in volt
+E_gp_g_a = atan(imag(E_gp_g) /real(E_gp_g))*180/%pi;//E_gp_g_a=phase angle of E_gp_g in degrees
+
+// case h
+IaZp = Ia_Zp * expm(%i * Z_p_a * (%pi/180) ); // voltage generated by alternator 1 in volt
+IaZp_m = abs(IaZp);//IaZp_m=magnitude of IaZp in A
+IaZp_a = atan(imag(IaZp) /real(IaZp))*180/%pi;//IaZp_a=phase angle of IaZp in degrees
+IaRa = IaZp_m*cosd(IaZp_a); // Real part of IaZp
+IaXs = IaZp_m*sind(IaZp_a); // Imaginery part of IaZp
+
+cos_theta = PF ; //
+sin_theta = sqrt( 1 - (cos_theta)^2 );
+// Generated voltage/phase in volt
+E_gp_h = ( V_p * cos_theta - IaRa ) + %i * ( V_p * sin_theta + IaXs);
+E_gp_h_m = abs(E_gp_h);//E_gp_h_m=magnitude of E_gp_h in volt
+E_gp_h_a = atan(imag(E_gp_h) /real(E_gp_h))*180/%pi;//E_gp_h_a=phase angle of E_gp_h in degrees
+
+// Display the results
+disp("Example 8-4 Solution : ");
+printf(" \n a: I_L = %.2f \n I_ap = %.2f A \n", I_L, I_ap );
+
+printf(" \n b: Z_p in ohm = ");disp(Z_p);
+printf(" \n Z_p = %.3f <%.2f ohm \n ", Z_p_m , Z_p_a );
+
+printf(" \n c: IaZp = %.1f V \n E_r = %.1f V \n ",Ia_Zp , E_r );
+
+printf(" \n d: Power factor angle,\n theta = %.2f degrees leading \n ", theta );
+
+printf(" \n e: Difference angle,\n deba = %.2f degrees \n ", deba );
+
+printf(" \n f: E_gp = %.f V \n ", E_gp_f );
+
+printf(" \n g: E_gp in V = ");disp(E_gp_g );
+printf(" \n E_gp = %d <%.2f V \n",E_gp_g_m , E_gp_g_a );
+
+printf(" \n h: E_gp in V = ");disp(E_gp_h);
+printf(" \n E_gp = %.f <%.2f V",E_gp_h_m, E_gp_h_a );