summaryrefslogtreecommitdiff
path: root/1073/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1073/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1073/CH4')
-rwxr-xr-x1073/CH4/EX4.1/4_1.sce9
-rwxr-xr-x1073/CH4/EX4.10/4_10.sce20
-rwxr-xr-x1073/CH4/EX4.11/4_11.sce22
-rwxr-xr-x1073/CH4/EX4.12/4_12.sce22
-rwxr-xr-x1073/CH4/EX4.13/4_13.sce22
-rwxr-xr-x1073/CH4/EX4.15/4_15.sce19
-rwxr-xr-x1073/CH4/EX4.16/4_16.sce27
-rwxr-xr-x1073/CH4/EX4.17/4_17.sce27
-rwxr-xr-x1073/CH4/EX4.18/4_18.sce16
-rwxr-xr-x1073/CH4/EX4.19/4_19.sce11
-rwxr-xr-x1073/CH4/EX4.2/4_2.sce9
-rwxr-xr-x1073/CH4/EX4.20/4_20.sce35
-rwxr-xr-x1073/CH4/EX4.21/4_21.sce24
-rwxr-xr-x1073/CH4/EX4.22/4_22.sce43
-rwxr-xr-x1073/CH4/EX4.23/4_23.sce22
-rwxr-xr-x1073/CH4/EX4.24/4_24.sce38
-rwxr-xr-x1073/CH4/EX4.3/4_3.sce16
-rwxr-xr-x1073/CH4/EX4.4/4_4.sce17
-rwxr-xr-x1073/CH4/EX4.5/4_5.sce17
-rwxr-xr-x1073/CH4/EX4.6/4_6.sce18
-rwxr-xr-x1073/CH4/EX4.7/4_7.sce10
-rwxr-xr-x1073/CH4/EX4.8/4_8.sce13
-rwxr-xr-x1073/CH4/EX4.9/4_9.sce19
23 files changed, 476 insertions, 0 deletions
diff --git a/1073/CH4/EX4.1/4_1.sce b/1073/CH4/EX4.1/4_1.sce
new file mode 100755
index 000000000..2ed8935ed
--- /dev/null
+++ b/1073/CH4/EX4.1/4_1.sce
@@ -0,0 +1,9 @@
+clc;
+clear;
+//Example 4.1
+e=0.9 //[Emissivity]
+sigma=5.67*10^-8 //[W/m^2.K^4]
+T1=377 //[K]
+T2=283 //[K]
+Qr_by_a=e*sigma*(T1^4-T2^4) //[W/sq m]
+printf("Heat loss by radiation is %d W/sq m",round(Qr_by_a));
diff --git a/1073/CH4/EX4.10/4_10.sce b/1073/CH4/EX4.10/4_10.sce
new file mode 100755
index 000000000..ebde4488c
--- /dev/null
+++ b/1073/CH4/EX4.10/4_10.sce
@@ -0,0 +1,20 @@
+clc;
+clear;
+//Example 4.10
+e1=0.05
+e2=e1
+A1=0.6944;
+A2=1;
+T1=293 //[K]
+T2=90 //[K]
+sigma=5.67*10^-8 //[W/m^2.K^4]
+D=0.3 //Diameter in [m]
+
+F12=1/(1/e1+(A1/A2)*(1/e2-1))
+Q_by_A=sigma*F12*(T1^4-T2^4) //[W/sq m]
+Q=Q_by_A*%pi*(D^2) //[kJ/h]
+Q=Q*3600/1000 //[kJ/h]
+lambda=21.44 //Latent heat in [kJ/kg]
+m_dot=Q/lambda //kg/h
+printf("\n The liquid oxygen will evaporate at %f kg/h",m_dot);
+
diff --git a/1073/CH4/EX4.11/4_11.sce b/1073/CH4/EX4.11/4_11.sce
new file mode 100755
index 000000000..51514e282
--- /dev/null
+++ b/1073/CH4/EX4.11/4_11.sce
@@ -0,0 +1,22 @@
+clc;
+clear;
+//Example4.11
+sigma=5.67*10^-8 //W/(m^2.K^4)
+e1=0.3;
+e2=e1;
+D1=0.3 //[m]
+D2=0.5 //[m]
+T1=90 //[K]
+T2=313 //[K]
+A1=%pi*D1^2 //Area in [sq m]
+A2=%pi*D2^2//Area in [sq m]
+Q1=sigma*A1*(T1^4-T2^4)/(1/e1+(A1/A2)*(1/e2-1)) //[W]
+Q1=abs(Q1); //Absolute value in [W]
+printf("\n Rate of heat flow due to radiation is %f W",Q1);
+//When Aluminium is used
+e1=0.05
+e2=0.5
+Q2=sigma*A1*(T1^4-T2^4)/(1/e1+(A1/A2)*(1/0.3-1)) //[W]
+Q2=abs(Q2) //Absolute value in [W]
+Red=(Q1-Q2)*100/Q1 //Percent reduction
+printf("\n Reduction in heat flow will be %f percent ",Red);
diff --git a/1073/CH4/EX4.12/4_12.sce b/1073/CH4/EX4.12/4_12.sce
new file mode 100755
index 000000000..0f0667341
--- /dev/null
+++ b/1073/CH4/EX4.12/4_12.sce
@@ -0,0 +1,22 @@
+
+clc;
+clear;
+//Example 4.12
+sigma=5.67*10^-8 //[W/sq m.K^4]
+T1=77 //[K]
+T2=303 //[K]
+D1=32 //cm
+D1=D1/100 //[m]
+D2=36 //[cm]
+D2=D2/100 //[m]
+A1=%pi*D1^2 //[sq m]
+A2=%pi*D2^2 //[sq m]
+e1=0.03;
+e2=e1;
+Q=sigma*A1*(T1^4-T2^4)/(1/e1+(A1/A2)*(1/e2-1)) //[W]
+Q=Q*3600/1000 //[kJ/h]
+Q=abs(Q); //[kJ/h]
+lambda=201 //kJ/kg
+m_dot=Q/lambda //Evaporation rate in [kg/h]
+printf("\n Nitrogen evaporates at %f kg/h",m_dot);
+
diff --git a/1073/CH4/EX4.13/4_13.sce b/1073/CH4/EX4.13/4_13.sce
new file mode 100755
index 000000000..062059f3d
--- /dev/null
+++ b/1073/CH4/EX4.13/4_13.sce
@@ -0,0 +1,22 @@
+
+clc;
+clear;
+//Example 4.13
+D1=250 //Inner sphere idameter[mm]
+D1=D1/1000 //Outer diameter [m]
+D2=350 //[mm]
+D2=D2/1000 //[m]
+sigma=5.67*10^-8 //W/(sq m.K^4)
+A1=%pi*D1^2 //[sq m]
+A2=%pi*D2^2 //[sq m]
+T1=76 //[K]
+T2=300 //[K]
+e1=0.04;
+e2=e1;
+Q=sigma*A1*(T1^4-T2^4)/((1/e1)+(A1/A2)*((1/e2)-1)) //[W]
+Q=-2.45 //Approximate
+Q=abs(Q) //[W]
+Q=Q*3600/1000 //[kJ/h]
+lambda=200 //kJ/kg
+Rate=Q/lambda //[kg/h]
+printf("\n Rate of evaporation is %f kg/h(approx)",Rate);
diff --git a/1073/CH4/EX4.15/4_15.sce b/1073/CH4/EX4.15/4_15.sce
new file mode 100755
index 000000000..062f44275
--- /dev/null
+++ b/1073/CH4/EX4.15/4_15.sce
@@ -0,0 +1,19 @@
+clc;
+clear;
+//Example 4.15
+sigma=5.67*10^-8 //[W/(m^2.K^4)]
+e1=0.4
+e3=0.2
+T1=473 //[K]
+T3=303 //[K]
+Q_by_a=sigma*(T1^4-T3^4)/((1/e1)+(1/e3)-1) //[W/sq m]
+//Q1_by_a=sigma*(T1^4-T2^4)/((1/e1)+(1/e2)-1)=sigma*A*(T2^4-T3^4)/((1/e2)+(1/e3)-1) //[W/sq m]
+e2=0.5
+//Solving we get
+T2=((6/9.5)*((3.5/6)*T3^4+T1^4))^(1/4) //[K]
+Q1_by_a=sigma*(T1^4-T2^4)/((1/e1)+(1/e2)-1) //[W/sq m]
+red=(Q_by_a-Q1_by_a)*100/Q_by_a
+printf("\nHeat transfer rate per unit area(WITHOUT SHIELD) due to radiation is %f W/sq m\n",Q_by_a);
+printf("\nHeat transfer rate per unit area(WITH SHIELD) due to radiation is %f W/sq m\n",Q1_by_a);
+printf("\nReduction in heat loss is %f percent",red);
+
diff --git a/1073/CH4/EX4.16/4_16.sce b/1073/CH4/EX4.16/4_16.sce
new file mode 100755
index 000000000..8c9a68af0
--- /dev/null
+++ b/1073/CH4/EX4.16/4_16.sce
@@ -0,0 +1,27 @@
+clc;
+clear;
+//Example 4.16
+//In steady state,we can write:
+//Qcd=Qdb
+//sigma(Tc^4-Td^4)*/(1/ec+1/ed-1)=sigma(Td^4-Tb^4)/(1/ed+1/eb-1)
+// i.e Td^4=0.5*(Tc^4-Tb^4)
+//Given:
+Ta=600 //[K]
+eA=0.8;
+eC=0.5;
+eD=0.4;
+sigma=5.67*10^-8 //For air
+//(600^4-Tc^4)/2.25=(Tc^4-Td^4)/3.5
+//1.56*(600^4-Tc^4)=Tc^4-Td^4
+//Putting value of Td in terms of Tc
+//1.56*(600^4-Tc^4)=Tc^4-0.5*(Tc^4-300^4)
+function y=f(Tc)
+ y=1.56*(600^4-Tc^4)-Tc^4+0.5*(Tc^4-300^4)
+endfunction
+Tc=fsolve(500,f); //[K]
+//or
+Tc=560.94 //[K] Approximate after solving
+Td=sqrt(sqrt(0.5*(Tc^4-300^4))) //[K]
+Q_by_a=sigma*(Ta^4-Tc^4)/(1/eA+1/eC-1) //[W/sq m]
+printf("\nRate of heat exchange per unit area=%f W/m^2",Q_by_a);
+printf("\nSteady state temperatures,Tc=%f K,and Td=%f K",Tc,Td);
diff --git a/1073/CH4/EX4.17/4_17.sce b/1073/CH4/EX4.17/4_17.sce
new file mode 100755
index 000000000..d73d598fe
--- /dev/null
+++ b/1073/CH4/EX4.17/4_17.sce
@@ -0,0 +1,27 @@
+clc;
+clear;
+//Example 4.17
+sigma=5.67*10^-8 //[W/(sq m.K^4)]
+e=0.8
+T1=673; //[K]
+T2=303; //[K]
+Do=200 //[mm]
+Do=Do/1000 //[m]
+L=1 //Let [m]
+A1=%pi*Do*L //[m^2/m]
+//CAse 1: Pipe to surrundings
+
+Q1=e*A1*sigma*(T1^4-T2^4) //[W/m]
+Q1=5600 //Approximated
+//Q1=5600 //[W/m] approximated in book for calculation purpose
+//Concentric cylinders
+e1=0.8;
+e2=0.91;
+D1=0.2 //[m]
+D2=0.4 //[m]
+Q2=sigma*0.628*(T1^4-T2^4)/((1/e1)+(D1/D2)*((1/e2)-1)) //[W/m] length
+Red=Q1-Q2 //Reduction in heat loss
+
+printf("\nDue to thermal radiaiton,Loss of heat to surrounding is %d W/m\n",round(Q1));
+printf("\nWhen pipe is enclosed in 1 400 mm diameter brick conduit,Loss of heat is %d W/m\n",round(Q2));
+printf("\n Reduction in heat loss is %d W/m\n",round(Red));
diff --git a/1073/CH4/EX4.18/4_18.sce b/1073/CH4/EX4.18/4_18.sce
new file mode 100755
index 000000000..894eb30a8
--- /dev/null
+++ b/1073/CH4/EX4.18/4_18.sce
@@ -0,0 +1,16 @@
+
+
+clc;
+clear;
+//Example 4.18
+
+
+sigma=5.67*10^-8 ; //[W/(sq m.K^4)]
+T1=813; //[K]
+T2=473; //[K]
+e1=0.87;
+e2=0.26;
+D1=0.25 ;//[m]
+D2=0.3; //[m]
+Q_by_a1=sigma*(T1^4-T2^4)/(1/e1+(D1/D2)*(1/e2-1)) //[W/ sqm]
+printf("\n Heat transfer by radiaiton is %d W/sq m",Q_by_a1);
diff --git a/1073/CH4/EX4.19/4_19.sce b/1073/CH4/EX4.19/4_19.sce
new file mode 100755
index 000000000..97c6bcd66
--- /dev/null
+++ b/1073/CH4/EX4.19/4_19.sce
@@ -0,0 +1,11 @@
+
+clc;
+clear;
+//Example 4.19
+sigma=5.67*10^-8 //[W/sq m.K^4]
+A1=0.5*1 //[sq m]
+F12=0.285
+T1=1273 ///[K]
+T2=773 //[K]
+Q=sigma*A1*F12*(T1^4-T2^4) //[W]
+printf("\n Net radiant heat exchange between plates is %d W",Q);
diff --git a/1073/CH4/EX4.2/4_2.sce b/1073/CH4/EX4.2/4_2.sce
new file mode 100755
index 000000000..c01af8bd2
--- /dev/null
+++ b/1073/CH4/EX4.2/4_2.sce
@@ -0,0 +1,9 @@
+clc;
+clear;
+//Example 4.2
+e=0.9 //Emissivity
+T1=393 //[K]
+T2=293 //[K]
+sigma=5.67*10^-8 //[W/sq m.K]
+Qr_by_a=e*sigma*(T1^4-T2^4) //W/sq m
+printf("\n Rate of heat transfer by radiation is %f W/sq m",Qr_by_a);
diff --git a/1073/CH4/EX4.20/4_20.sce b/1073/CH4/EX4.20/4_20.sce
new file mode 100755
index 000000000..4ca535724
--- /dev/null
+++ b/1073/CH4/EX4.20/4_20.sce
@@ -0,0 +1,35 @@
+clc;
+clear;
+//Example 4.20
+sigma=5.67*10^-8 //[W/sq m.K^4]
+T1=750 //[K]
+T2=500 //[K]
+e1=0.75;
+e2=0.5;
+//Heat transfer without shield :
+
+Q_by_a=sigma*(T1^4-T2^4)/((1/e1)+(1/e2)-1) //[W/sq m]
+
+//Heat transfer with shield:
+R1=(1-e1)/e1 //Resistance 1
+
+F13=1;
+R2=1/F13 //Resistance 2
+
+e3=0.05
+R3=(1-e3)/e3 //Resistance 3
+
+R4=(1-e3)/e3 //Resistance 4
+
+F32=1;
+R5=1/F32 //Resistance 5
+
+R6=(1-e2)/e2 //Resistance 6
+
+Total_R=R1+R2+R3+R4+R5+R6 //Total resistance
+
+Q_by_as=sigma*(T1^4-T2^4)/Total_R //[W/sq m]
+
+Red=(Q_by_a-Q_by_as)*100/Q_by_a //Reduciton in heat tranfer due to shield
+
+printf("\n Reduction in heat transfer rate as a result of radiaiotn shield is %f percent",Red);
diff --git a/1073/CH4/EX4.21/4_21.sce b/1073/CH4/EX4.21/4_21.sce
new file mode 100755
index 000000000..7c91c8dec
--- /dev/null
+++ b/1073/CH4/EX4.21/4_21.sce
@@ -0,0 +1,24 @@
+clc;
+clear;
+//Example 4.21
+e1=0.3
+e2=0.8
+//Let sigma*(T1^4-T2^4)=z=1(const)
+z=1; //Let
+Q_by_A=z/(1/e1+1/e2-1) //W/sq m
+
+//Heat transfer with radiation shield
+e3=0.04
+F13=1;
+F32=1;
+//The resistances are:
+R1=(1-e1)/e1
+R2=1/F13
+R3=(1-e3)/e3
+R4=R3
+R5=1/F32
+R6=(1-e2)/e2
+R=R1+R2+R3+R4+R5+R6 //Total resistance
+Q_by_As=z/R //where z=sigma*(T1^4-T2^4) //W/sq m
+red=(Q_by_A-Q_by_As)*100/Q_by_A //Percent reduction in heat transfer
+printf("\n The heat transfer is reduced by %f percent due to shield",red)
diff --git a/1073/CH4/EX4.22/4_22.sce b/1073/CH4/EX4.22/4_22.sce
new file mode 100755
index 000000000..c6cb26c81
--- /dev/null
+++ b/1073/CH4/EX4.22/4_22.sce
@@ -0,0 +1,43 @@
+
+clc;
+clear;
+//Example 4.22
+sigma=5.67*10^-8;
+T1=1273 //[K]
+T2=773 //[K]
+T3=300 //[K]
+A1=0.5 //[sq m]
+A2=A1; //[sq m]
+F12=0.285;
+F21=F12;
+F13=1-F12;
+F23=1-F21;
+e1=0.2;
+e2=0.5;
+//Resistance in the network are calculated as:
+R1=1-e1/(e1*A1)
+R2=1-e2/(e2*A2)
+R3=1/(A1*F12)
+R4=1/(A1*F13)
+R5=1/(A2*F23)
+R6=0 //Given (1-e3)/e3*A3=0
+//Also
+Eb1=sigma*T1^4 //W/sq m
+Eb2=sigma*T2^4 //[W/sq m]
+Eb3=sigma*T3^4 //[W/sq m]
+
+//Equations are:
+//(Eb1-J1)/2+(J2-J1)/7.018+(Eb3-J1)/2.797=0
+//(J1-J2)/7.018+(Eb3-J2)/2.797+(Eb2-J2)/2=0
+
+//On solving we get:
+J1=33515 //[W/sq m]
+J2=15048 //[W/sqm]
+J3=Eb3 //[W/sq m]
+Q1=(Eb1-J1)/((1-e1)/(e1*A1)) //[W/sq m]
+Q2=(Eb2-J2)/((1-e2)/(e2*A2)) //[W/sq m]
+Q3=(J1-J3)/(1/(A1*F13))+(J2-J3)/(1/(A2*F23)) //[W/sq m]
+printf("\n Total heat lost by plate 1 is %f W/sq m\n",Q1);
+printf("\n Total heat lost by plate 2 is %f W/sq m\n",Q2);
+printf("\nThe net energy lost by both plates must be absorbed by the room,\n %f=%f",Q3,Q1+Q2)
+
diff --git a/1073/CH4/EX4.23/4_23.sce b/1073/CH4/EX4.23/4_23.sce
new file mode 100755
index 000000000..be2dd7a03
--- /dev/null
+++ b/1073/CH4/EX4.23/4_23.sce
@@ -0,0 +1,22 @@
+clc;
+clear;
+//Example 4.23
+sigma=5.67*10^-8 //[W/sq m.K^4]
+e1=0.7;
+e2=0.7;
+T1=866.5 //[K]
+T2=588.8 //[K]
+Q_by_A=sigma*(T1^4-T2^4)/((1/e1)+(1/e2)-1) //[W/sq m]
+e1=0.7;
+e2=e1;
+e3=e1;
+e4=e1;
+e=e1;
+//Q with n shells =1/(n+1)
+n=2
+Q_shield=1/(n+1);
+es1=e1;
+es2=e1;
+Q_by_A=sigma*(T1^4-T2^4)/((1/e1)+(1/e2)+2*(1/es1+1/es2)-(n+1)) //[W/sq m]
+printf("\n New Radiaiton loss is %f W/sq m",Q_by_A);
+
diff --git a/1073/CH4/EX4.24/4_24.sce b/1073/CH4/EX4.24/4_24.sce
new file mode 100755
index 000000000..62dd800f6
--- /dev/null
+++ b/1073/CH4/EX4.24/4_24.sce
@@ -0,0 +1,38 @@
+clc;
+clear;
+//Example 4.24
+//1.WITHOUT SHIELD
+sigma=5.67*10^-8
+e1=0.12;
+e2=0.15;
+T1=100 //[K]
+T2=300 //[K]
+r1=0.015 //[m]
+r2=0.045 //[m]
+L=1 //[m]
+A1=2*%pi*r1*L //[sq m]
+Q_by_L=2*%pi*r1*sigma*(T1^4-T2^4)/(1/e1+(r1/r2)*(1/e2-1)) //[W/m]
+//-ve saign indicates that the net heat flow is in the radial inward direction
+//2.WITH CYLINDRICAL RADIATION SHIELD
+e3=0.10;
+e4=0.05;
+r3=0.0225 //[m]
+Qs_by_L=2*%pi*r1*sigma*(T1^4-T2^4)/(1/e1+r1/r2*(1/e2-1)+(r1/r3)*(1/e3+1/e4-1)) //[W/sq m]
+red=(abs(Q_by_L)-abs(Qs_by_L))*100/abs(Q_by_L) //percent reduction in heat gain
+
+//Radiation network approach
+A3=2*%pi*r3 //[sq m]
+A2=2*%pi*r2 //[sq m]
+F13=1;
+F32=1;
+R1=(1-e1)/(e1*A1)
+R2=1/(A1*F13)
+R3=(1-e3)/(e3*A3)
+R4=(1-e4)/(e4*A3)
+R5=1/(A3*F32)
+R6=(1-e2)/(e2*A2)
+
+Qs=sigma*(T1^4-T2^4)/((1-e1)/(e1*A1)+1/(A1*F13)+(1-e3)/(e3*A3)+(1-e4)/(e4*A3)+1/(A3*F32)+(1-e2)/(e2*A2))
+printf("\n With cylindrical radiaiton shield Heat gained by fluid per 1 m lengh of tube is %f W/m\n",Qs_by_L);
+printf("\nPercent reduction in heat gain is %f percent\n",red);
+printf("\nWith radiaiton network approach %f W/sqm ",Qs);
diff --git a/1073/CH4/EX4.3/4_3.sce b/1073/CH4/EX4.3/4_3.sce
new file mode 100755
index 000000000..340e0eec3
--- /dev/null
+++ b/1073/CH4/EX4.3/4_3.sce
@@ -0,0 +1,16 @@
+
+clc;
+clear;
+//Example 4.3
+L=1; //[m]
+e=0.8 ; //Emissivity
+sigma=5.67*10^-8 ; //[m^2.K^4]
+T1=423; //[K]
+T2=300; //[K]
+Do=60; //[mm]
+Do=Do/1000; //[m]
+A=%pi*Do*L //[sq m]
+A=0.189 //Approx in book [m^2]
+Qr=e*sigma*A*(T1^4-T2^4) //[W/m]
+printf("\n Net radiaiton rate per 1 metre length of pipe is %d W/m",round(Qr));
+
diff --git a/1073/CH4/EX4.4/4_4.sce b/1073/CH4/EX4.4/4_4.sce
new file mode 100755
index 000000000..69d78cd61
--- /dev/null
+++ b/1073/CH4/EX4.4/4_4.sce
@@ -0,0 +1,17 @@
+clc;
+clear;
+//Example 4.4
+e=0.9 //Emissivity
+L=1 //[m]
+Do=50 //[mm]
+Do=Do/1000 //[m]
+sigma=5.67*10^-8 //[W/(m^2.K^4)]
+T1=415 //[K]
+T2=290 //[K]
+dT=T1-T2 //[K]
+hc=1.18*(dT/Do)^(0.25) //[W/sq m.K]
+A=%pi*Do*L //Area in [sq m]
+Qc=hc*A*dT //Heat loss by convection W/m
+Qr=e*sigma*A*(T1^4-T2^4) //Heat loss by radiation per length W/m
+Qt=Qc+Qr //Total heat loss in [W/m]
+printf("\n Total heat loss by convection is %f W/m",Qt);
diff --git a/1073/CH4/EX4.5/4_5.sce b/1073/CH4/EX4.5/4_5.sce
new file mode 100755
index 000000000..00ba6c238
--- /dev/null
+++ b/1073/CH4/EX4.5/4_5.sce
@@ -0,0 +1,17 @@
+clc;
+clear;
+//Example 4.5
+e=0.85
+sigma=5.67*10^-8 //[W/sq m.K]
+T1=443 //[K]
+T2=290 //[K]
+dT=T1-T2 //[K]
+hc=1.64*dT^0.25 //W/sq m.K
+Do=60 //[mm]
+Do=Do/1000 //[m]
+L=6 //Length [m]
+A=%pi*Do*L //Surface area of pipe in [sq m]
+Qr=e*sigma*A*(T1^4-T2^4) // Rate of heat loss by radiaiton W
+Qc=hc*A*(T1-T2) // Rate of heat loss by convection [W]
+Qt=Qr+Qc //Total heat loss [W]
+printf("\n Total heat loss is %d W",round(Qt))
diff --git a/1073/CH4/EX4.6/4_6.sce b/1073/CH4/EX4.6/4_6.sce
new file mode 100755
index 000000000..9f41ff8cb
--- /dev/null
+++ b/1073/CH4/EX4.6/4_6.sce
@@ -0,0 +1,18 @@
+
+clc;
+clear;
+//EXample 4.6
+sigma=5.67*10^-8 //[W/m^2.K^4]
+e1=0.79;
+e2=0.93;
+T1=500 ; //[K]
+T2=300 ; //[K]
+D=70 //[mm]
+D=D/1000 //[m]
+L=3 //[m]
+W=0.3 //Side of conduit [m]
+A1=%pi*D*L //[sq m]
+A1=0.659 //Approximate calculation in book in [m^2]
+A2=4*(L*W) //[sq m]
+Q=sigma*A1*(T1^4-T2^4)/(1/e1+((A1/A2)*(1/e2-1))) //[W]
+printf("\n Heat lost by radiation is %f W",Q);
diff --git a/1073/CH4/EX4.7/4_7.sce b/1073/CH4/EX4.7/4_7.sce
new file mode 100755
index 000000000..34f1a17cc
--- /dev/null
+++ b/1073/CH4/EX4.7/4_7.sce
@@ -0,0 +1,10 @@
+clc;
+clear;
+//Example 4.7
+sigma=5.67*10^-8 //[W/sq m.K^4]
+T1=703 //[K]
+T2=513 //[K]
+e1=0.85
+e2=0.75
+Q_by_Ar=sigma*(T1^4-T2^4)/(1/e1+1/e2-1) //[W/sq m]
+printf("\n Net radiant interchange per square metre is %d W/sq m",round(Q_by_Ar));
diff --git a/1073/CH4/EX4.8/4_8.sce b/1073/CH4/EX4.8/4_8.sce
new file mode 100755
index 000000000..10ad30c9d
--- /dev/null
+++ b/1073/CH4/EX4.8/4_8.sce
@@ -0,0 +1,13 @@
+clc;
+clear;
+//Example 4.8
+L=3 ;//[m]
+A=L^2 //Area in [sq m]
+sigma=5.67*10^-8; //[W/sq m.K^4]
+T1=373; //[K]
+T2=313; //[K]
+e1=0.736;
+e2=e1;
+F12=1/((1/e1)+(1/e2)-1)
+Q=sigma*A*F12*(T1^4-T2^4) //[W]
+printf("\n Net radiant interchange is %d W",round(Q));
diff --git a/1073/CH4/EX4.9/4_9.sce b/1073/CH4/EX4.9/4_9.sce
new file mode 100755
index 000000000..887a1f7c4
--- /dev/null
+++ b/1073/CH4/EX4.9/4_9.sce
@@ -0,0 +1,19 @@
+clc;
+clear;
+sigma=5.67*10^-8 //[W/sq m.K^4]
+e1=0.05
+e2=0.05
+//A1=A2=1 (let)
+A1=1;
+A2=A1;
+F12=1/(1/e1+(A1/A2)*(1/e2-1))
+T1=368 //[K]
+T2=293 //[K]
+Q_by_A=sigma*F12*(T1^4-T2^4) //Heat loss per unit Area [W/sq m]
+printf("\nRate of heat loss when of silvered surface is %f W/sq m",Q_by_A);
+//When both the surfaces are black
+e1=1;
+e2=1;
+F12=1/(1/e1+(A1/A2)*(1/e2-1))
+Q_by_A=sigma*F12*(T1^4-T2^4) //[W/sq m]
+printf("\n When both surfaces are black,Rate of heat loss is %d W/sq m",round(Q_by_A));