diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1052/CH19 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1052/CH19')
-rwxr-xr-x | 1052/CH19/EX19.1/191.sce | 26 | ||||
-rwxr-xr-x | 1052/CH19/EX19.2/192.sce | 17 | ||||
-rwxr-xr-x | 1052/CH19/EX19.3/193.sce | 12 | ||||
-rwxr-xr-x | 1052/CH19/EX19.4/194.sce | 19 | ||||
-rwxr-xr-x | 1052/CH19/EX19.5/195.sce | 23 | ||||
-rwxr-xr-x | 1052/CH19/EX19.6/196.sce | 16 | ||||
-rwxr-xr-x | 1052/CH19/EX19.7/197.sce | 23 | ||||
-rwxr-xr-x | 1052/CH19/EX19.9/199.sce | 9 |
8 files changed, 145 insertions, 0 deletions
diff --git a/1052/CH19/EX19.1/191.sce b/1052/CH19/EX19.1/191.sce new file mode 100755 index 000000000..c6d260c9d --- /dev/null +++ b/1052/CH19/EX19.1/191.sce @@ -0,0 +1,26 @@ +clc;
+//Example 19.1
+//page no. 246
+printf("Example 19.1 page no 246\n\n");
+//we have to find pressure at different point in a oil tank
+//apply manometer equation between point 1 and 2
+//since rho1=rho2,z1=z2
+//it gives P1=P2
+//applying manometer equation between points 2 and 3
+rho_oil=0.8*1000//density of oil
+//since rho3=rho_oil=rho2
+rho3=rho_oil
+z_32=.4//height difference between point 2 and 3
+g=9.807//grav. acc.
+P7=0//pressure at point 7,on gauge basis
+z_76=0.8//height difference between point 6 and 7
+rho_hg=13600//density of mercury
+P6=P7 + rho_hg*g*z_76//pressure at point 6
+P5=P6//pressure at point 5
+rho_air=1.2//density of air
+z_54=1//height difference between point 5 and 4
+P4=P5 + rho_air*g*z_54//pressure at point 4
+P3=P4//pressure at point 3
+P2=P3 + rho_oil*g*z_32//pressure at point 2
+P1=P2//air pressure in the oil tank
+printf("\n pressure P1=%f Pag",P1);
diff --git a/1052/CH19/EX19.2/192.sce b/1052/CH19/EX19.2/192.sce new file mode 100755 index 000000000..72818b8da --- /dev/null +++ b/1052/CH19/EX19.2/192.sce @@ -0,0 +1,17 @@ +clc;
+//Example 19.2
+//page no 250
+printf("Example 19.2 page no 250\n\n");
+//pitot tube is located at the center line of a horizontal pipe transporting air
+rho=0.075//density of gas ,lb/ft^2
+h=0.0166667//height difference,ft
+g=32.2//gravitational acc. lb/ft^2
+rho_m=62.4//density of medium which is air
+v=sqrt(2*g*h*(rho_m-rho)/rho)//velocity
+printf("\n velocity v=%f ft/s",v);
+v_max=v//because at that point where the reading was taken is the centerline
+printf("\n maximum veocity v_max=%f ft/s",v_max);
+//since the flowing fluid is air at a high velocity the flow has a high probability of being turbilent .from chapter 14,assume
+//v_av/v_max=0.815
+v_av=v_max*0.815
+printf("\n average velocity v_av=%f ft/s",v_av);
diff --git a/1052/CH19/EX19.3/193.sce b/1052/CH19/EX19.3/193.sce new file mode 100755 index 000000000..1ce97930c --- /dev/null +++ b/1052/CH19/EX19.3/193.sce @@ -0,0 +1,12 @@ +clc;
+//Example 19.3
+//page no 251
+printf("Example 19.3 page no 251\n\n");
+//refer to example 19.3
+S=0.785//cross sectional area,ft^2
+v_av=24.4//average velocity,ft/s
+q=v_av*S*60//flow rate,factor 60 for minute
+printf("\n flow rate q=%f ft^3 min",q);
+rho=0.075//density
+m_dot=q*rho*60//mass flow rate
+printf("\n m_dot mass flow rate=%f lb/hr",m_dot);
diff --git a/1052/CH19/EX19.4/194.sce b/1052/CH19/EX19.4/194.sce new file mode 100755 index 000000000..c5b9ed0a5 --- /dev/null +++ b/1052/CH19/EX19.4/194.sce @@ -0,0 +1,19 @@ +clc;
+//Example 19.4
+//page no 251
+printf("Example 19.4 page no\n\n")
+//water flow ina circular pipe,a pitot tube is used to measure the water velocity
+h=0.07//manometer height,m
+rho=1000//density of water,kg/m^3
+rho_m=13600//density of mercury,kg/m^3
+g=9.807
+v=sqrt(2*g*h*(rho_m-rho)/rho)
+printf("\n water velocity v=%f m/s ",v);
+D=0.0779//pipe inside diameter,by using table A.5 in the appendix for a 3 inch schedule 40 pipe
+S=(%pi/4)*D^2
+printf("/n cross sectional area S=%f m^2",S);
+q=v*S//flow rate
+printf("\n flow rate q=%f m^3/s",q);
+meu=0.001//viscosity of water,kg/m.s
+R_e=rho*v*D/meu//reynolds number
+printf("\n reynolds no R_e=%f ",R_e);
diff --git a/1052/CH19/EX19.5/195.sce b/1052/CH19/EX19.5/195.sce new file mode 100755 index 000000000..360836ac7 --- /dev/null +++ b/1052/CH19/EX19.5/195.sce @@ -0,0 +1,23 @@ +clc;
+//Example 19.5
+//page no 254
+printf("Example 19.5 page no 254\n\n");
+//a venturi meter has gasoline flowing through it.
+h=0.035//height of venturi meter
+D1=0.06//upsteeam diameter,m
+D2=0.02//throat diameter,m
+rho_m=13600//density of mercury
+rho=680//density of gasoline
+g=9.807
+v2=sqrt((2*g*h*(rho_m-rho)/rho)/1-D2^4/D1^4)//velocity of gasoline at the the throat
+printf("\n velocity at throat v2=%f m/s",v2);
+q=(%pi/4)*D2^2*v2//flow rate
+printf("\n flow rate q =%f m^3/s",q);
+P1=101325//upstream pressure,Pa
+P2=P1-g*h*(rho_m-rho)//pressure at throat P2
+printf("\n pressure P2=%f Pa",P2);
+P_d=P1-P2//pressure difference
+P_l=.1*P_d//pressure loss is 10 %
+printf("\n pressure loss P_l=%f Pa",P_l);
+W_l=q*P_l//power loss
+printf("\n power loss W_l=%f W",W_l);
diff --git a/1052/CH19/EX19.6/196.sce b/1052/CH19/EX19.6/196.sce new file mode 100755 index 000000000..f5a22b9e0 --- /dev/null +++ b/1052/CH19/EX19.6/196.sce @@ -0,0 +1,16 @@ +clc;
+//Example 19.6
+//page no. 255
+printf("\n Example 19.6 page no. 255\n\n");
+//refer to example 19.5
+//if gasoline has vapor pressure of 50000Pa ,we have to calculate flow rate at whhich cavitation to occur
+P1=101325//upstream pressure,Pa
+P2=50000//given vapor pressure,Pa
+D1=0.06//upstream diameter,m
+D2=0.02//throat diameter,m
+rho=680//density of gasoline
+v2=sqrt((2*(P1-P2))/rho*(1-D2^4/D1^4))//velocity
+printf("\n velocity v2=%f m/s",v2);
+q=(%pi/4)*D2^2*v2//flow rate
+printf("\n flow rate q=%f m^3/s",q);
+
diff --git a/1052/CH19/EX19.7/197.sce b/1052/CH19/EX19.7/197.sce new file mode 100755 index 000000000..186d2730b --- /dev/null +++ b/1052/CH19/EX19.7/197.sce @@ -0,0 +1,23 @@ +clc;
+//Example 19.7
+//page no 258
+printf("Example 19.7 page no 258\n\n");
+//an orifice meter is equipped with flange top is installed to measure the flow rate of air in a circular duct
+D1=0.25//diameter of circular duct,m
+D2=0.19//orifice diamter,m
+v2=4/(%pi*D2^2)//velocity through orifice
+printf("\n velocity through orifice v2=%f m/s",v2);
+C_o=1// assuming orifice discharge coefficient
+rho=1.23//density of air,kg/m^3
+P=rho*v2^2*[1-(D2^4/D1^4)]/2//pressure
+printf("\n pressure P=%f Pa",P);
+meu=1.8e-5// absolute viscosity
+R_e=rho*v2*D2/(meu)//reynolds no.
+printf("\n Reynolds no. R_e=%f ",R_e);
+C_ac=0.62//actual discharge cefficient,from fig.19.8
+P_ac=P/(C_ac)^2//actual pressure drop
+P_rec=14*(D2/D1) + 80*((D2/D1)^2)//equation for percentage pressure recovery
+P_loss=100-P_rec//precentage pressure loss
+P_l=round((P_loss/100)*P_ac)//actual pressure drop after recovery
+printf("\n actual pressure drop P_l=%f Pa",P_l);
+
diff --git a/1052/CH19/EX19.9/199.sce b/1052/CH19/EX19.9/199.sce new file mode 100755 index 000000000..5af570f48 --- /dev/null +++ b/1052/CH19/EX19.9/199.sce @@ -0,0 +1,9 @@ +clc;
+//Example 19.9
+//page no 259
+printf("\n Example 19.9 page no 259\n\n");
+//air at ambient condition is flowing in a pipe
+rho=0.075//density of air ,lb/ft^3
+m_dot=0.5//mass flow rate ,lb/s
+q=m_dot/rho//volumatric flow rate
+printf("\n volumatric flow rate q=%f ft^3/s",q);
|