summaryrefslogtreecommitdiff
path: root/1052/CH14
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1052/CH14
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1052/CH14')
-rwxr-xr-x1052/CH14/EX14.1/141.sce11
-rwxr-xr-x1052/CH14/EX14.10/1410.sce26
-rwxr-xr-x1052/CH14/EX14.11/1411.sce20
-rwxr-xr-x1052/CH14/EX14.2/142.sce11
-rwxr-xr-x1052/CH14/EX14.3/143.sce26
-rwxr-xr-x1052/CH14/EX14.4/144.sce25
-rwxr-xr-x1052/CH14/EX14.5/145.sce44
-rwxr-xr-x1052/CH14/EX14.6/146.sce25
-rwxr-xr-x1052/CH14/EX14.7/147.sce25
-rwxr-xr-x1052/CH14/EX14.8/148.sce19
-rwxr-xr-x1052/CH14/EX14.9/149.sce10
11 files changed, 242 insertions, 0 deletions
diff --git a/1052/CH14/EX14.1/141.sce b/1052/CH14/EX14.1/141.sce
new file mode 100755
index 000000000..76d35fd47
--- /dev/null
+++ b/1052/CH14/EX14.1/141.sce
@@ -0,0 +1,11 @@
+clc;
+//Example 14.1
+//page no 148
+printf("Example 14.1 page no 148\n\n");
+//a liquid flow through a tube
+meu=0.78e-2//viscosity of liquid,g/cm*s
+rho=1.50//density,g/cm^3
+D=2.54//diameter,cm
+v=20//flow velocity
+R_e=D*v*rho/meu//reynolds no
+printf("\n Reynolds no R_e=%f ",R_e);
diff --git a/1052/CH14/EX14.10/1410.sce b/1052/CH14/EX14.10/1410.sce
new file mode 100755
index 000000000..afc12be9d
--- /dev/null
+++ b/1052/CH14/EX14.10/1410.sce
@@ -0,0 +1,26 @@
+clc;
+//Example 14.10
+//page no 163
+printf("Example 14.10 page no 163\n\n");
+//a fluid is moving in the turbulent flw through a pipe
+// a hot wire anemometer is inserted to measure the local velocity at a given point P in the system
+//following readings were recorded at equal time interval
+//instantaneous velocities at subsequent time interval
+vz=[43.4,42.1,42,40.8,38.5,37,37.5,38,39,41.7]
+vz_bar=0;
+n=10;
+i = 0;
+sums=0;
+for i = 1:10
+ sums=sums+vz(i);
+end
+vz_bar=sums/n;
+printf("\n vz_bar=%f",vz_bar);
+sigma=0;
+for i=1:10
+ sigma=sigma+(vz(i)-vz_bar)^2;
+ vz_sqr=sigma/10;
+end
+printf("\n vz_sqr=%f",vz_sqr)
+I = sqrt(vz_sqr)/vz_bar//intensity of turbulance
+printf("\n intensity of turbulance I=%f ",I);
diff --git a/1052/CH14/EX14.11/1411.sce b/1052/CH14/EX14.11/1411.sce
new file mode 100755
index 000000000..0f258c4a4
--- /dev/null
+++ b/1052/CH14/EX14.11/1411.sce
@@ -0,0 +1,20 @@
+clc;
+//Example 14.11
+//page no 164
+printf("Example 14.11 page no 164\n\n");
+//a fluid is flowing through a pipe
+D=2//inside diameter of pipe,in
+v_max=30//maximum velocity,ft/min
+A=(%pi/4)*(D/12)^2//cross sectional area
+//(a) for laminar flow
+v_a=(1/2)*v_max//average velocity
+q_a=v_a*A//volumatric flow rate
+printf("\n flow rate q_a=%f ft^3/min",q_a);
+//(b) for plug flow
+v_b=v_max//average velocity
+q_b=v_b*A//volumatric flow rate
+printf(" \nflow rate q_b=%f ft^3/min",q_b);
+//(c)for turbulent flow
+v_c=(49/60)*v_max//average velocity
+q_c=v_c*A//volumatric flow rate
+printf("\n flow rate q_c=%f ft^3/min",q_c);
diff --git a/1052/CH14/EX14.2/142.sce b/1052/CH14/EX14.2/142.sce
new file mode 100755
index 000000000..d5570500b
--- /dev/null
+++ b/1052/CH14/EX14.2/142.sce
@@ -0,0 +1,11 @@
+clc;
+//Example 14.2
+//page no 148
+printf("Example 14.2 page no 148\n\n");
+//a fluid is moving through a cylinder in laminar flow
+meu=6.9216e-4//viscosity of fluid,lb/ft*s
+rho=62.4//density,lb/ft^3
+D=1/12//diameter,ft
+R_e=2100//reynolds no
+v=R_e*meu/(D*rho)//minimum velocity at which turbulance will appear
+printf("\n velocity v=%f ft/s",v);
diff --git a/1052/CH14/EX14.3/143.sce b/1052/CH14/EX14.3/143.sce
new file mode 100755
index 000000000..504d620a3
--- /dev/null
+++ b/1052/CH14/EX14.3/143.sce
@@ -0,0 +1,26 @@
+clc;
+//Example 14.3
+//page no 152
+printf("Example 14.3 page no 152\n\n");
+//calculate the friction factor by using different equation's
+R_e=14080//reynolds no
+K_r=0.004//relative roughness
+//(a) by PAT proposed equation
+f_a=0.0015+[8*(R_e)^0.30]^-1
+printf("\n fanning friction factor f_a=%f ",f_a);
+//equation for 5000<R_e>50000
+f_b1=0.0786/(R_e)^0.25
+printf("\n friction factor f_b1=%f ",f_b1);
+// equation for 30000<R_e>1000000
+f_b2=0.046/(R_e)^0.20
+printf("\n friction factor f_b2=%f ",f_b2);
+// equation for the completely turbulent region
+f_c=1/[4*(1.14-2*log10(K_r))^2]
+printf("\n friction factor f_c=%f ",f_c);
+//equation given by jain
+f_d=1/[2.28-4*log10(K_r+21.25/(R_e^.9))]^2
+printf("\n friction factor f_d=%f ",f_d);
+f_e=0.0085 //from figur 14.2
+printf("\n friction factor f_e=%f",f_e);
+f_av=(f_a+f_b1+f_b2+f_c+f_d+f_e)/6
+printf("\n average friction f_av=%f ",f_av);
diff --git a/1052/CH14/EX14.4/144.sce b/1052/CH14/EX14.4/144.sce
new file mode 100755
index 000000000..a542f3930
--- /dev/null
+++ b/1052/CH14/EX14.4/144.sce
@@ -0,0 +1,25 @@
+clc;
+//Example 14.4
+//page no 154
+printf("Example 14.4 page no 154\n\n");
+//for turbulent fluid flow in across section
+//(a) for a rectangle
+w=2//width of a rectangle,in
+h=10//height of rectangle,in
+S_a=h*w//cross sectional area
+P_a=2*h+2*w//perimeter of rectangle
+D_eq_a=4*S_a/P_a//equivalent diameter
+printf("\n equivalent diameter D_eq_a=%f in",D_eq_a);
+//(b) for an annulus
+d_o=10//outer diameter of annulus
+d_i=8//inner diameter
+S_b=%pi*(d_o^2-d_i^2)/4//cross sectional area
+P_b=%pi*(d_o-d_i)//perimeter
+D_eq_b=(4*S_b)/(P_b)//eq. diameter
+printf("\n equivalent diameter D_eq_b=%f cm",D_eq_b);
+//(c) for an half- full circle
+d_c=10//diameter of circle
+S_c=%pi*d_c^2/8// cross sectional area
+P_c=%pi*d_c/2//perimeter
+D_eq_c=4*S_c/P_c//eq. diameter
+printf("\n equivalent diameter D_eq_c=%f cm",D_eq_c);
diff --git a/1052/CH14/EX14.5/145.sce b/1052/CH14/EX14.5/145.sce
new file mode 100755
index 000000000..1a87f13a3
--- /dev/null
+++ b/1052/CH14/EX14.5/145.sce
@@ -0,0 +1,44 @@
+clc;
+//Exampkle 14.5
+//page no 157
+printf("Example 14.5 page no 157\n\n");
+//air is transported through a circular conduit
+MW=28.9//molecular weight of air
+R=10.73//gas constant
+T=500//temperature
+P=14.75//pressure,psia
+//applying ideal gas law for density
+rho=P*MW/(R*T)//density
+rho=0.08//after round off
+meu=3.54e-7//viscosity of air at 40 degF
+//assume flow is laminar
+q=8.33//flow rate ,ft^3/s
+L=800//length of pipe,ft
+P_1=.1//pressure at starting point
+P_2=.01//pressure at delivery point
+D=[(128*meu*L*q)/(%pi*(P_1-P_2)*144)]^(1/4)//diameter
+printf("\n pipe diameter D=%f ft",D);
+//check the flow type
+meu=1.14e-5
+R_e1=4*q*rho/(%pi*D*meu)//reynolds no
+//printf("\n reynolds no R_e=%f ",R_e);
+//from R_e we can conclude that laminar flow is not valid
+P_drop=12.96//pressure drop P_1-P2 in psf
+f=0.005//fanning friction factor
+g_c=32.174
+D=(32*rho*f*L*q^2/(g_c*%pi^2*P_drop))^(0.2)//diamter from new assumption
+//strat the second iteration with the newly calculated D
+k=0.00006/12//roughness factor
+K_r=k/D//relative roughness
+C_f=1.321224
+R_e_n=4*q*rho/(%pi*D*meu)//new reynolds no
+//printf("\n new reynolds no R_e=%f ",R_e);
+f_n=0.0045//new fanning friction factor
+D=[((8*rho*f_n*L*q^2)/(g_c*%pi^2*P_drop))^(0.2)]*C_f//final calculated diameter because last diameter is same with this
+printf("\nD=%f ",D);
+//iteration may now be terminated
+S=%pi*(D^2)/4//cross sectional area of pipe
+v=q/S//flow velocity
+printf("\n flow velocity v=%f ft/s",v);//printing mistake in book in the value of meu in the formula of D is first time that's why this deviation in answer
+
+
diff --git a/1052/CH14/EX14.6/146.sce b/1052/CH14/EX14.6/146.sce
new file mode 100755
index 000000000..ad3d4ed6b
--- /dev/null
+++ b/1052/CH14/EX14.6/146.sce
@@ -0,0 +1,25 @@
+clc;
+//Example 14.6
+//page no 159
+printf("Example 14.6 page no. 159\n\n");
+//ethyl alcohol is pumped through a horizontal tube
+rho=789//density .kg/m^3
+meu=1.1e-3//viscosity ,kg/m-s
+k=1.5e-6//roughness,m
+L=60//length of tube,m
+q=2.778e-3//flow rate
+g=9.807
+h_f=30//friction loss
+A=(L*q^2)/(g*h_f)
+A=1.574e-7
+//D=0.66*[[(k^1.25)*(A^4.75)+meu*(A^5.2)/(q*rho)]^.04]
+D=0.0377
+//calculate velocity of alcohol in the tube
+S=3.14*(D)^2/4//surface area
+v=q/S//velocity
+v=3.93//velocity
+neu=1.395e-6//dynamic viscosity
+R_e=D*v/neu//reynolds no
+printf("\n R_e=%f ",R_e);//printing mistake in book
+printf("\n since R_e is more than 4000 flow is turbulent");
+
diff --git a/1052/CH14/EX14.7/147.sce b/1052/CH14/EX14.7/147.sce
new file mode 100755
index 000000000..b4e891e0a
--- /dev/null
+++ b/1052/CH14/EX14.7/147.sce
@@ -0,0 +1,25 @@
+clc;
+//Exanmple 14.7
+//page no 160
+printf("Example 14.7 page no 160\n\n");
+//kerosene flow ina lng ,smooth ,horizontal pipe
+rho=820//density,kg/m^3
+D=0.0493//iside diameter of pipe by appendix A.5,m
+R_e=60000
+meu=0.0016//viscosity,kg/m.s
+v=(R_e*meu)/(D*rho)// flow average velocity
+printf("\n average velocity v=%f m/s",v);
+S=(%pi/4)*D^2//cross sectional area
+printf("\n S=%f ",S);
+q=v/S//flow rate
+printf("\n flow rate q=%f m^3/s",q);//printing mistake in book
+m_dot=rho*q//mass flow rate
+printf("\n mass flow rate m_dot=%f kg/s",m_dot);//printing mistake in book in the value of v
+n=7//seventh power apply
+v_max=v/(2*n^2/((n+1)*(2*n+1)))//maximum velocity
+printf("\n v_max=%f m/s",v_max);
+//check the assumptioon of fully developed flow
+R_e=60000//reynolds no
+L_c=4.4*R_e^(1/6)*D//critical length
+printf("\n length L_c=%f m",L_c);
+//since L_c <L th eassumption is valid
diff --git a/1052/CH14/EX14.8/148.sce b/1052/CH14/EX14.8/148.sce
new file mode 100755
index 000000000..bf28d2ac1
--- /dev/null
+++ b/1052/CH14/EX14.8/148.sce
@@ -0,0 +1,19 @@
+clc;
+//Example 14.8
+//page no 161
+printf("\n Example 14.8 page no 161\n\n");
+//refer to example no 14.7
+rho=860//density
+R_e=60000//reynolds no
+f=.046/R_e^.2//fanning friction factor
+printf("\n fanning friction factor f=%f ",f);
+L=9//length of tube
+v=2.38//velocity
+D=.0493//diameter of tube
+g=9.807
+h_f=4*f*(L*v^2)/(D*2*g)//friction loss
+printf("\n h_f friction loss=%f m ",h_f);
+//applying bernoulli equation
+P_drop=rho*g*h_f//pressure drop in pa
+P_drop_a=P_drop/10^5//pressure drop in atm
+printf("\n P_drop_a =%f atm",P_drop_a);
diff --git a/1052/CH14/EX14.9/149.sce b/1052/CH14/EX14.9/149.sce
new file mode 100755
index 000000000..776ba54e7
--- /dev/null
+++ b/1052/CH14/EX14.9/149.sce
@@ -0,0 +1,10 @@
+clc;
+//Example 14.9
+//page no 161
+printf(" Example 14.9 page no 161\n\n");
+//refer to example 14.7
+D=0.0493//diameter of tuube
+S=%pi*D^2/4//cross sectional area\
+P=8685//pressure
+F=P*S//force required to hold the pipe,direction is opposite the flow
+printf("\n Force required to hold pipe F=%f N",F);