summaryrefslogtreecommitdiff
path: root/1052/CH13
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1052/CH13
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1052/CH13')
-rwxr-xr-x1052/CH13/EX13.1/131.sce24
-rwxr-xr-x1052/CH13/EX13.2/132.sce11
-rwxr-xr-x1052/CH13/EX13.4/134.sce13
-rwxr-xr-x1052/CH13/EX13.5/135.sce23
-rwxr-xr-x1052/CH13/EX13.6/136.sce19
-rwxr-xr-x1052/CH13/EX13.7/137.sce15
6 files changed, 105 insertions, 0 deletions
diff --git a/1052/CH13/EX13.1/131.sce b/1052/CH13/EX13.1/131.sce
new file mode 100755
index 000000000..e25505f58
--- /dev/null
+++ b/1052/CH13/EX13.1/131.sce
@@ -0,0 +1,24 @@
+clc;
+//Example 13.1
+//page no 136
+printf("Example 13.1 page no 136\n\n");
+//calculate average velocities for which th flow will be viscous,laminar
+//(a) water at 60 deg F in a 2-inch standard pipe
+R_e=2100//reynolds number <2100, for laminar flow
+meu_w=6.72e-4//viscosity of water,lb/ft.s
+rho_w=62.4//density of water,lb/ft^3
+D_w=2.067//diameter of pipe,ft
+v_w=(R_e*meu_w)/((D_w/12)*rho_w)//velocity of water
+printf("\n velocity v_w=%f ft/s",v_w);
+//(b) air at 60 deg F and 5 psig in a 2 inch standard pipe
+meu_a=12.1e-6//viscosity of air ,lb/ft.s
+rho_a=.1024// density of air,lb/ft^3
+D_a=0.17225//diameter of pipe ,ft
+v_a=(R_e*meu_a)/(D_a*rho_a)//velocity of air
+printf("\n velocity of air v_a=%f ft/s",v_a);
+//(c) oil of a viscosity of 300 cP and SG of .92 in a 4 inch standard pipe
+meu_o=300*6.72e-4//viscosity of oil ,lb/ft.s
+rho_o=0.92*62.4//density of oil, lb/ft^3
+D_o=.3355//diameter of pipe,ft
+v_o=round((R_e*meu_o)/(D_o*rho_o))//velocity of oil
+printf("\n velocity of oil v_o=%f ft/s",v_o);
diff --git a/1052/CH13/EX13.2/132.sce b/1052/CH13/EX13.2/132.sce
new file mode 100755
index 000000000..b8d524eb9
--- /dev/null
+++ b/1052/CH13/EX13.2/132.sce
@@ -0,0 +1,11 @@
+clc;
+//Example 13.2
+//page no 137
+printf(" Example 13.2 page no 137\n\n");
+//refer to part a of example 1
+//appplying Hagen-Poiseuille equation
+meu=6.72e-4//viscosity of water
+v=0.13//velocity of water
+D=2.067/12//diameter of pipe
+P_l=32*meu*v/(D^2)
+printf("\n pressure drop per unit length P_l=%f psf/ft",P_l);
diff --git a/1052/CH13/EX13.4/134.sce b/1052/CH13/EX13.4/134.sce
new file mode 100755
index 000000000..e1376b86d
--- /dev/null
+++ b/1052/CH13/EX13.4/134.sce
@@ -0,0 +1,13 @@
+clc;
+//Example 13.4
+//page no 138
+printf(" Example 13.4 page no 138\n\n ");
+//an air conducting duct has a rectangular cross section
+w=1//width of rectangular section
+h=0.25//height of rectangular section
+D=2*w*h/(w+h)//equivalent or hydraulic diameter
+printf("\n hydraulic diameter D=%f m",D)
+R_e=2300//critical reynolds no
+neu=1e-5//kinematic viscosity of air
+v=R_e*neu/D//velocity
+printf("\n velocity of air v=%f m/s",v);
diff --git a/1052/CH13/EX13.5/135.sce b/1052/CH13/EX13.5/135.sce
new file mode 100755
index 000000000..59184f7cb
--- /dev/null
+++ b/1052/CH13/EX13.5/135.sce
@@ -0,0 +1,23 @@
+clc;
+//Example 13.5
+//page no 139
+printf(" Example 13.5 page no 139\n\n");
+//a circulsr horizontal tube cntains asphalt
+D=0.1667//diameter of tube,ft
+s=%pi*D^2/4//surface area of tube,ft^2
+q=0.486//volumatric flow rate,ft^3/s
+v=q/s//flow velocity
+printf("flow velocity v=%f ft/s",v);
+g=32.174
+P_grad=144//pressure gradient ,psf/ft
+meu=(%pi*P_grad*g*D^4)/(128*q)//dynamic viscosity,laminar flow
+printf("\n dynamic viscosity meu=%f lb/ft.s",meu);
+//check on the laminar flow
+rho=70//density,lb/ft^3
+R_e=D*v*rho/meu//reynlods number
+printf("\n reynolds no R_e=%f ",R_e);
+f=16/R_e//fanning friction factor
+printf("\n friction factor f=%f ",f);
+//the pipe must be longer than the entrance length to have fully developed flow
+L_e=0.05*D*R_e//entrance length
+printf("\n entance length L_e=%f ft",L_e);
diff --git a/1052/CH13/EX13.6/136.sce b/1052/CH13/EX13.6/136.sce
new file mode 100755
index 000000000..bede02cc5
--- /dev/null
+++ b/1052/CH13/EX13.6/136.sce
@@ -0,0 +1,19 @@
+ clc;
+//Example 13.6
+//page no 140
+printf(" Example 13.6 page no 140\n\n");
+//liquid glycerin flows in a tube
+//to obtain the properties of glycerine use table A.2 in the appendix
+rho=1260//density,kg/m^3
+meu=1.49//viscosity,kg/ms
+neu=meu/rho//kinematic viscosity,m^2/s
+R=0.02//by no slip condition radius of tube,m
+q=32*%pi*integrate('r-2500*r^3','r',0,R);//volumatric flow rate from the given parabolic velocity distribution
+printf("vol. flow rate q=%f m^3/s",q);
+r=0//for average velocity for laminar flow
+v_av=16*(1-2500*r^2)/2//average velocity
+q=0.010//approximation
+m_dot=q*rho//mass flow rate
+G=rho*v_av//mass flux
+M_dot=m_dot*v_av//inear momentum flux
+printf("\n av. velocity v_av=%f m/s\n mass flow rate m_dot=%f kg/s\n mass flux G=%f kg/m^2.s\n linear mometum flux M_dot=%f N ",v_av,m_dot,G,M_dot);
diff --git a/1052/CH13/EX13.7/137.sce b/1052/CH13/EX13.7/137.sce
new file mode 100755
index 000000000..ca5ce5b95
--- /dev/null
+++ b/1052/CH13/EX13.7/137.sce
@@ -0,0 +1,15 @@
+clc;
+//Example 13.7
+//page no 142
+printf("Example 13.7 page no 142\n\n");
+//refer to example 13.6
+rho=1260//density,kg/m^3
+v=8//flow velocity,m^2/s
+D=0.02//diameter,m
+meu=1.49//viscosity
+R_e=rho*v*D/meu//reynolds no
+printf("\n reynolds no R_e=%f ",R_e);
+V=14000//volume in gallons of glycerine pass through a cross section of tube
+q=159.6//flow rate
+t=V/q//time
+printf("\n time t=%f min",t);