summaryrefslogtreecommitdiff
path: root/1040/CH6/EX6.4
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1040/CH6/EX6.4
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1040/CH6/EX6.4')
-rw-r--r--1040/CH6/EX6.4/Chapter6_Ex4.sce61
1 files changed, 61 insertions, 0 deletions
diff --git a/1040/CH6/EX6.4/Chapter6_Ex4.sce b/1040/CH6/EX6.4/Chapter6_Ex4.sce
new file mode 100644
index 000000000..86305a9f6
--- /dev/null
+++ b/1040/CH6/EX6.4/Chapter6_Ex4.sce
@@ -0,0 +1,61 @@
+// Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-6 Ex6.4 Pg No.251
+//Title:Conversion in packed bed for same superficial velocity
+//====================================================================================================================
+clear
+clc
+//COMMON INPUT
+L=2.5;//Lendth of bed(ft)
+X_A=0.95;//Conversion
+L_a=3;//Length of section a (ft)
+L_b=2;//Length of section b (ft)
+u_oa_by_u0=0.88;//Refer equation 3.64
+u_ob_by_u0=1.12;
+L=2.5;//(ft)
+
+
+//CALCULATION (Ex6.4.a)
+k_rho_L_by_u=log(1/(1-X_A));//First Order reactions
+//For Section a
+k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L);
+X_A_section_a=(1-exp(-k_rho_L_by_u_a));
+//For Section b
+k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L);//Dimensionless Group based on ideal plug flow for first order reaction
+X_A_section_b=(1-exp(-k_rho_L_by_u_b));
+X_A_Ave=(X_A_section_b+X_A_section_a)/2;
+Percent_X_A_Ave=X_A_Ave*100
+
+//CALCULATION (Ex6.4.b)
+k_rho_L_by_u=log(1/(1-X_A));//First Order reaction
+//For Section a
+k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L)*(1/u_oa_by_u0);
+X_A_section_a=(1-exp(-k_rho_L_by_u_a));
+delP_a_by_alpha_u0_pow=L_a*(u_oa_by_u0);//Refer equation 3.64
+
+//For Section b
+k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L)*(1/u_ob_by_u0);//Dimensionless Group based on ideal plug flow for first order reaction
+delP_b_by_alpha_u0_pow=L_b*u_ob_by_u0;
+X_A_section_b=(1-exp(-k_rho_L_by_u_b));
+X_A_avg=(u_oa_by_u0*X_A_section_a+u_ob_by_u0*X_A_section_b)/2;
+Percent_X_A_avg=X_A_avg*100;
+
+//OUTPUT(Ex6.4.a)
+mprintf('\n OUTPUT Ex6.4.a');
+mprintf('\n==========================================================');
+mprintf('\nThe average converion when each section has same superficial velocity:%0.1f%%',Percent_X_A_Ave );
+
+//OUTPUT(Ex6.4.b)
+mprintf('\n\n\n OUTPUT Ex6.4.b');
+mprintf('\n==========================================================');
+mprintf('\nThe overall conversion for different velocities:%0.1f%% ',Percent_X_A_avg );
+
+//FILE OUTPUT
+fid= mopen('.\Chapter6-Ex4-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex6.4.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe average converion when each section has same superficial velocity:%0.1f%%',Percent_X_A_Ave );
+mfprintf(fid,'\n\n\n OUTPUT Ex6.4.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe overall conversion for different velocities:%0.1f%% ',Percent_X_A_avg );
+mclose(fid);
+//=======================================================END OF PROGRAM=================================================