diff options
Diffstat (limited to 'lib/python2.7/site-packages/django/db/models/sql/query.py')
-rw-r--r-- | lib/python2.7/site-packages/django/db/models/sql/query.py | 1922 |
1 files changed, 0 insertions, 1922 deletions
diff --git a/lib/python2.7/site-packages/django/db/models/sql/query.py b/lib/python2.7/site-packages/django/db/models/sql/query.py deleted file mode 100644 index 7868c19..0000000 --- a/lib/python2.7/site-packages/django/db/models/sql/query.py +++ /dev/null @@ -1,1922 +0,0 @@ -""" -Create SQL statements for QuerySets. - -The code in here encapsulates all of the SQL construction so that QuerySets -themselves do not have to (and could be backed by things other than SQL -databases). The abstraction barrier only works one way: this module has to know -all about the internals of models in order to get the information it needs. -""" - -import copy - -from django.utils.datastructures import SortedDict -from django.utils.encoding import force_text -from django.utils.tree import Node -from django.utils import six -from django.db import connections, DEFAULT_DB_ALIAS -from django.db.models.constants import LOOKUP_SEP -from django.db.models.aggregates import refs_aggregate -from django.db.models.expressions import ExpressionNode -from django.db.models.fields import FieldDoesNotExist -from django.db.models.related import PathInfo -from django.db.models.sql import aggregates as base_aggregates_module -from django.db.models.sql.constants import (QUERY_TERMS, ORDER_DIR, SINGLE, - ORDER_PATTERN, JoinInfo, SelectInfo) -from django.db.models.sql.datastructures import EmptyResultSet, Empty, MultiJoin -from django.db.models.sql.expressions import SQLEvaluator -from django.db.models.sql.where import (WhereNode, Constraint, EverythingNode, - ExtraWhere, AND, OR, EmptyWhere) -from django.core.exceptions import FieldError - -__all__ = ['Query', 'RawQuery'] - - -class RawQuery(object): - """ - A single raw SQL query - """ - - def __init__(self, sql, using, params=None): - self.params = params or () - self.sql = sql - self.using = using - self.cursor = None - - # Mirror some properties of a normal query so that - # the compiler can be used to process results. - self.low_mark, self.high_mark = 0, None # Used for offset/limit - self.extra_select = {} - self.aggregate_select = {} - - def clone(self, using): - return RawQuery(self.sql, using, params=self.params) - - def convert_values(self, value, field, connection): - """Convert the database-returned value into a type that is consistent - across database backends. - - By default, this defers to the underlying backend operations, but - it can be overridden by Query classes for specific backends. - """ - return connection.ops.convert_values(value, field) - - def get_columns(self): - if self.cursor is None: - self._execute_query() - converter = connections[self.using].introspection.table_name_converter - return [converter(column_meta[0]) - for column_meta in self.cursor.description] - - def __iter__(self): - # Always execute a new query for a new iterator. - # This could be optimized with a cache at the expense of RAM. - self._execute_query() - if not connections[self.using].features.can_use_chunked_reads: - # If the database can't use chunked reads we need to make sure we - # evaluate the entire query up front. - result = list(self.cursor) - else: - result = self.cursor - return iter(result) - - def __repr__(self): - return "<RawQuery: %r>" % (self.sql % tuple(self.params)) - - def _execute_query(self): - self.cursor = connections[self.using].cursor() - self.cursor.execute(self.sql, self.params) - - -class Query(object): - """ - A single SQL query. - """ - # SQL join types. These are part of the class because their string forms - # vary from database to database and can be customised by a subclass. - INNER = 'INNER JOIN' - LOUTER = 'LEFT OUTER JOIN' - - alias_prefix = 'T' - query_terms = QUERY_TERMS - aggregates_module = base_aggregates_module - - compiler = 'SQLCompiler' - - def __init__(self, model, where=WhereNode): - self.model = model - self.alias_refcount = {} - # alias_map is the most important data structure regarding joins. - # It's used for recording which joins exist in the query and what - # type they are. The key is the alias of the joined table (possibly - # the table name) and the value is JoinInfo from constants.py. - self.alias_map = {} - self.table_map = {} # Maps table names to list of aliases. - self.join_map = {} - self.default_cols = True - self.default_ordering = True - self.standard_ordering = True - self.used_aliases = set() - self.filter_is_sticky = False - self.included_inherited_models = {} - - # SQL-related attributes - # Select and related select clauses as SelectInfo instances. - # The select is used for cases where we want to set up the select - # clause to contain other than default fields (values(), annotate(), - # subqueries...) - self.select = [] - # The related_select_cols is used for columns needed for - # select_related - this is populated in compile stage. - self.related_select_cols = [] - self.tables = [] # Aliases in the order they are created. - self.where = where() - self.where_class = where - self.group_by = None - self.having = where() - self.order_by = [] - self.low_mark, self.high_mark = 0, None # Used for offset/limit - self.distinct = False - self.distinct_fields = [] - self.select_for_update = False - self.select_for_update_nowait = False - self.select_related = False - - # SQL aggregate-related attributes - self.aggregates = SortedDict() # Maps alias -> SQL aggregate function - self.aggregate_select_mask = None - self._aggregate_select_cache = None - - # Arbitrary maximum limit for select_related. Prevents infinite - # recursion. Can be changed by the depth parameter to select_related(). - self.max_depth = 5 - - # These are for extensions. The contents are more or less appended - # verbatim to the appropriate clause. - self.extra = SortedDict() # Maps col_alias -> (col_sql, params). - self.extra_select_mask = None - self._extra_select_cache = None - - self.extra_tables = () - self.extra_order_by = () - - # A tuple that is a set of model field names and either True, if these - # are the fields to defer, or False if these are the only fields to - # load. - self.deferred_loading = (set(), True) - - def __str__(self): - """ - Returns the query as a string of SQL with the parameter values - substituted in (use sql_with_params() to see the unsubstituted string). - - Parameter values won't necessarily be quoted correctly, since that is - done by the database interface at execution time. - """ - sql, params = self.sql_with_params() - return sql % params - - def sql_with_params(self): - """ - Returns the query as an SQL string and the parameters that will be - subsituted into the query. - """ - return self.get_compiler(DEFAULT_DB_ALIAS).as_sql() - - def __deepcopy__(self, memo): - result = self.clone(memo=memo) - memo[id(self)] = result - return result - - def prepare(self): - return self - - def get_compiler(self, using=None, connection=None): - if using is None and connection is None: - raise ValueError("Need either using or connection") - if using: - connection = connections[using] - - # Check that the compiler will be able to execute the query - for alias, aggregate in self.aggregate_select.items(): - connection.ops.check_aggregate_support(aggregate) - - return connection.ops.compiler(self.compiler)(self, connection, using) - - def get_meta(self): - """ - Returns the Options instance (the model._meta) from which to start - processing. Normally, this is self.model._meta, but it can be changed - by subclasses. - """ - return self.model._meta - - def clone(self, klass=None, memo=None, **kwargs): - """ - Creates a copy of the current instance. The 'kwargs' parameter can be - used by clients to update attributes after copying has taken place. - """ - obj = Empty() - obj.__class__ = klass or self.__class__ - obj.model = self.model - obj.alias_refcount = self.alias_refcount.copy() - obj.alias_map = self.alias_map.copy() - obj.table_map = self.table_map.copy() - obj.join_map = self.join_map.copy() - obj.default_cols = self.default_cols - obj.default_ordering = self.default_ordering - obj.standard_ordering = self.standard_ordering - obj.included_inherited_models = self.included_inherited_models.copy() - obj.select = self.select[:] - obj.related_select_cols = [] - obj.tables = self.tables[:] - obj.where = self.where.clone() - obj.where_class = self.where_class - if self.group_by is None: - obj.group_by = None - else: - obj.group_by = self.group_by[:] - obj.having = self.having.clone() - obj.order_by = self.order_by[:] - obj.low_mark, obj.high_mark = self.low_mark, self.high_mark - obj.distinct = self.distinct - obj.distinct_fields = self.distinct_fields[:] - obj.select_for_update = self.select_for_update - obj.select_for_update_nowait = self.select_for_update_nowait - obj.select_related = self.select_related - obj.related_select_cols = [] - obj.aggregates = self.aggregates.copy() - if self.aggregate_select_mask is None: - obj.aggregate_select_mask = None - else: - obj.aggregate_select_mask = self.aggregate_select_mask.copy() - # _aggregate_select_cache cannot be copied, as doing so breaks the - # (necessary) state in which both aggregates and - # _aggregate_select_cache point to the same underlying objects. - # It will get re-populated in the cloned queryset the next time it's - # used. - obj._aggregate_select_cache = None - obj.max_depth = self.max_depth - obj.extra = self.extra.copy() - if self.extra_select_mask is None: - obj.extra_select_mask = None - else: - obj.extra_select_mask = self.extra_select_mask.copy() - if self._extra_select_cache is None: - obj._extra_select_cache = None - else: - obj._extra_select_cache = self._extra_select_cache.copy() - obj.extra_tables = self.extra_tables - obj.extra_order_by = self.extra_order_by - obj.deferred_loading = copy.copy(self.deferred_loading[0]), self.deferred_loading[1] - if self.filter_is_sticky and self.used_aliases: - obj.used_aliases = self.used_aliases.copy() - else: - obj.used_aliases = set() - obj.filter_is_sticky = False - - obj.__dict__.update(kwargs) - if hasattr(obj, '_setup_query'): - obj._setup_query() - return obj - - def convert_values(self, value, field, connection): - """Convert the database-returned value into a type that is consistent - across database backends. - - By default, this defers to the underlying backend operations, but - it can be overridden by Query classes for specific backends. - """ - return connection.ops.convert_values(value, field) - - def resolve_aggregate(self, value, aggregate, connection): - """Resolve the value of aggregates returned by the database to - consistent (and reasonable) types. - - This is required because of the predisposition of certain backends - to return Decimal and long types when they are not needed. - """ - if value is None: - if aggregate.is_ordinal: - return 0 - # Return None as-is - return value - elif aggregate.is_ordinal: - # Any ordinal aggregate (e.g., count) returns an int - return int(value) - elif aggregate.is_computed: - # Any computed aggregate (e.g., avg) returns a float - return float(value) - else: - # Return value depends on the type of the field being processed. - return self.convert_values(value, aggregate.field, connection) - - def get_aggregation(self, using): - """ - Returns the dictionary with the values of the existing aggregations. - """ - if not self.aggregate_select: - return {} - - # If there is a group by clause, aggregating does not add useful - # information but retrieves only the first row. Aggregate - # over the subquery instead. - if self.group_by is not None: - from django.db.models.sql.subqueries import AggregateQuery - query = AggregateQuery(self.model) - - obj = self.clone() - - # Remove any aggregates marked for reduction from the subquery - # and move them to the outer AggregateQuery. - for alias, aggregate in self.aggregate_select.items(): - if aggregate.is_summary: - query.aggregate_select[alias] = aggregate - del obj.aggregate_select[alias] - - try: - query.add_subquery(obj, using) - except EmptyResultSet: - return dict( - (alias, None) - for alias in query.aggregate_select - ) - else: - query = self - self.select = [] - self.default_cols = False - self.extra = {} - self.remove_inherited_models() - - query.clear_ordering(True) - query.clear_limits() - query.select_for_update = False - query.select_related = False - query.related_select_cols = [] - - result = query.get_compiler(using).execute_sql(SINGLE) - if result is None: - result = [None for q in query.aggregate_select.items()] - - return dict([ - (alias, self.resolve_aggregate(val, aggregate, connection=connections[using])) - for (alias, aggregate), val - in zip(query.aggregate_select.items(), result) - ]) - - def get_count(self, using): - """ - Performs a COUNT() query using the current filter constraints. - """ - obj = self.clone() - if len(self.select) > 1 or self.aggregate_select or (self.distinct and self.distinct_fields): - # If a select clause exists, then the query has already started to - # specify the columns that are to be returned. - # In this case, we need to use a subquery to evaluate the count. - from django.db.models.sql.subqueries import AggregateQuery - subquery = obj - subquery.clear_ordering(True) - subquery.clear_limits() - - obj = AggregateQuery(obj.model) - try: - obj.add_subquery(subquery, using=using) - except EmptyResultSet: - # add_subquery evaluates the query, if it's an EmptyResultSet - # then there are can be no results, and therefore there the - # count is obviously 0 - return 0 - - obj.add_count_column() - number = obj.get_aggregation(using=using)[None] - - # Apply offset and limit constraints manually, since using LIMIT/OFFSET - # in SQL (in variants that provide them) doesn't change the COUNT - # output. - number = max(0, number - self.low_mark) - if self.high_mark is not None: - number = min(number, self.high_mark - self.low_mark) - - return number - - def has_results(self, using): - q = self.clone() - q.clear_select_clause() - q.add_extra({'a': 1}, None, None, None, None, None) - q.set_extra_mask(['a']) - q.clear_ordering(True) - q.set_limits(high=1) - compiler = q.get_compiler(using=using) - return bool(compiler.execute_sql(SINGLE)) - - def combine(self, rhs, connector): - """ - Merge the 'rhs' query into the current one (with any 'rhs' effects - being applied *after* (that is, "to the right of") anything in the - current query. 'rhs' is not modified during a call to this function. - - The 'connector' parameter describes how to connect filters from the - 'rhs' query. - """ - assert self.model == rhs.model, \ - "Cannot combine queries on two different base models." - assert self.can_filter(), \ - "Cannot combine queries once a slice has been taken." - assert self.distinct == rhs.distinct, \ - "Cannot combine a unique query with a non-unique query." - assert self.distinct_fields == rhs.distinct_fields, \ - "Cannot combine queries with different distinct fields." - - self.remove_inherited_models() - # Work out how to relabel the rhs aliases, if necessary. - change_map = {} - conjunction = (connector == AND) - - # Determine which existing joins can be reused. When combining the - # query with AND we must recreate all joins for m2m filters. When - # combining with OR we can reuse joins. The reason is that in AND - # case a single row can't fulfill a condition like: - # revrel__col=1 & revrel__col=2 - # But, there might be two different related rows matching this - # condition. In OR case a single True is enough, so single row is - # enough, too. - # - # Note that we will be creating duplicate joins for non-m2m joins in - # the AND case. The results will be correct but this creates too many - # joins. This is something that could be fixed later on. - reuse = set() if conjunction else set(self.tables) - # Base table must be present in the query - this is the same - # table on both sides. - self.get_initial_alias() - # Now, add the joins from rhs query into the new query (skipping base - # table). - for alias in rhs.tables[1:]: - table, _, join_type, lhs, join_cols, nullable, join_field = rhs.alias_map[alias] - promote = (join_type == self.LOUTER) - # If the left side of the join was already relabeled, use the - # updated alias. - lhs = change_map.get(lhs, lhs) - new_alias = self.join( - (lhs, table, join_cols), reuse=reuse, - outer_if_first=not conjunction, nullable=nullable, - join_field=join_field) - if promote: - self.promote_joins([new_alias]) - # We can't reuse the same join again in the query. If we have two - # distinct joins for the same connection in rhs query, then the - # combined query must have two joins, too. - reuse.discard(new_alias) - change_map[alias] = new_alias - if not rhs.alias_refcount[alias]: - # The alias was unused in the rhs query. Unref it so that it - # will be unused in the new query, too. We have to add and - # unref the alias so that join promotion has information of - # the join type for the unused alias. - self.unref_alias(new_alias) - - # So that we don't exclude valid results in an OR query combination, - # all joins exclusive to either the lhs or the rhs must be converted - # to an outer join. RHS joins were already set to outer joins above, - # so check which joins were used only in the lhs query. - if not conjunction: - rhs_used_joins = set(change_map.values()) - to_promote = [alias for alias in self.tables - if alias not in rhs_used_joins] - self.promote_joins(to_promote, True) - - # Now relabel a copy of the rhs where-clause and add it to the current - # one. - if rhs.where: - w = rhs.where.clone() - w.relabel_aliases(change_map) - if not self.where: - # Since 'self' matches everything, add an explicit "include - # everything" where-constraint so that connections between the - # where clauses won't exclude valid results. - self.where.add(EverythingNode(), AND) - elif self.where: - # rhs has an empty where clause. - w = self.where_class() - w.add(EverythingNode(), AND) - else: - w = self.where_class() - self.where.add(w, connector) - - # Selection columns and extra extensions are those provided by 'rhs'. - self.select = [] - for col, field in rhs.select: - if isinstance(col, (list, tuple)): - new_col = change_map.get(col[0], col[0]), col[1] - self.select.append(SelectInfo(new_col, field)) - else: - new_col = col.relabeled_clone(change_map) - self.select.append(SelectInfo(new_col, field)) - - if connector == OR: - # It would be nice to be able to handle this, but the queries don't - # really make sense (or return consistent value sets). Not worth - # the extra complexity when you can write a real query instead. - if self.extra and rhs.extra: - raise ValueError("When merging querysets using 'or', you " - "cannot have extra(select=...) on both sides.") - self.extra.update(rhs.extra) - extra_select_mask = set() - if self.extra_select_mask is not None: - extra_select_mask.update(self.extra_select_mask) - if rhs.extra_select_mask is not None: - extra_select_mask.update(rhs.extra_select_mask) - if extra_select_mask: - self.set_extra_mask(extra_select_mask) - self.extra_tables += rhs.extra_tables - - # Ordering uses the 'rhs' ordering, unless it has none, in which case - # the current ordering is used. - self.order_by = rhs.order_by[:] if rhs.order_by else self.order_by - self.extra_order_by = rhs.extra_order_by or self.extra_order_by - - def deferred_to_data(self, target, callback): - """ - Converts the self.deferred_loading data structure to an alternate data - structure, describing the field that *will* be loaded. This is used to - compute the columns to select from the database and also by the - QuerySet class to work out which fields are being initialised on each - model. Models that have all their fields included aren't mentioned in - the result, only those that have field restrictions in place. - - The "target" parameter is the instance that is populated (in place). - The "callback" is a function that is called whenever a (model, field) - pair need to be added to "target". It accepts three parameters: - "target", and the model and list of fields being added for that model. - """ - field_names, defer = self.deferred_loading - if not field_names: - return - orig_opts = self.get_meta() - seen = {} - must_include = {orig_opts.concrete_model: set([orig_opts.pk])} - for field_name in field_names: - parts = field_name.split(LOOKUP_SEP) - cur_model = self.model - opts = orig_opts - for name in parts[:-1]: - old_model = cur_model - source = opts.get_field_by_name(name)[0] - if is_reverse_o2o(source): - cur_model = source.model - else: - cur_model = source.rel.to - opts = cur_model._meta - # Even if we're "just passing through" this model, we must add - # both the current model's pk and the related reference field - # (if it's not a reverse relation) to the things we select. - if not is_reverse_o2o(source): - must_include[old_model].add(source) - add_to_dict(must_include, cur_model, opts.pk) - field, model, _, _ = opts.get_field_by_name(parts[-1]) - if model is None: - model = cur_model - if not is_reverse_o2o(field): - add_to_dict(seen, model, field) - - if defer: - # We need to load all fields for each model, except those that - # appear in "seen" (for all models that appear in "seen"). The only - # slight complexity here is handling fields that exist on parent - # models. - workset = {} - for model, values in six.iteritems(seen): - for field, m in model._meta.get_fields_with_model(): - if field in values: - continue - add_to_dict(workset, m or model, field) - for model, values in six.iteritems(must_include): - # If we haven't included a model in workset, we don't add the - # corresponding must_include fields for that model, since an - # empty set means "include all fields". That's why there's no - # "else" branch here. - if model in workset: - workset[model].update(values) - for model, values in six.iteritems(workset): - callback(target, model, values) - else: - for model, values in six.iteritems(must_include): - if model in seen: - seen[model].update(values) - else: - # As we've passed through this model, but not explicitly - # included any fields, we have to make sure it's mentioned - # so that only the "must include" fields are pulled in. - seen[model] = values - # Now ensure that every model in the inheritance chain is mentioned - # in the parent list. Again, it must be mentioned to ensure that - # only "must include" fields are pulled in. - for model in orig_opts.get_parent_list(): - if model not in seen: - seen[model] = set() - for model, values in six.iteritems(seen): - callback(target, model, values) - - - def deferred_to_columns_cb(self, target, model, fields): - """ - Callback used by deferred_to_columns(). The "target" parameter should - be a set instance. - """ - table = model._meta.db_table - if table not in target: - target[table] = set() - for field in fields: - target[table].add(field.column) - - - def table_alias(self, table_name, create=False): - """ - Returns a table alias for the given table_name and whether this is a - new alias or not. - - If 'create' is true, a new alias is always created. Otherwise, the - most recently created alias for the table (if one exists) is reused. - """ - current = self.table_map.get(table_name) - if not create and current: - alias = current[0] - self.alias_refcount[alias] += 1 - return alias, False - - # Create a new alias for this table. - if current: - alias = '%s%d' % (self.alias_prefix, len(self.alias_map) + 1) - current.append(alias) - else: - # The first occurence of a table uses the table name directly. - alias = table_name - self.table_map[alias] = [alias] - self.alias_refcount[alias] = 1 - self.tables.append(alias) - return alias, True - - def ref_alias(self, alias): - """ Increases the reference count for this alias. """ - self.alias_refcount[alias] += 1 - - def unref_alias(self, alias, amount=1): - """ Decreases the reference count for this alias. """ - self.alias_refcount[alias] -= amount - - def promote_joins(self, aliases, unconditional=False): - """ - Promotes recursively the join type of given aliases and its children to - an outer join. If 'unconditional' is False, the join is only promoted if - it is nullable or the parent join is an outer join. - - Note about join promotion: When promoting any alias, we make sure all - joins which start from that alias are promoted, too. When adding a join - in join(), we make sure any join added to already existing LOUTER join - is generated as LOUTER. This ensures we don't ever have broken join - chains which contain first a LOUTER join, then an INNER JOIN, that is - this kind of join should never be generated: a LOUTER b INNER c. The - reason for avoiding this type of join chain is that the INNER after - the LOUTER will effectively remove any effect the LOUTER had. - """ - aliases = list(aliases) - while aliases: - alias = aliases.pop(0) - if self.alias_map[alias].join_cols[0][1] is None: - # This is the base table (first FROM entry) - this table - # isn't really joined at all in the query, so we should not - # alter its join type. - continue - parent_alias = self.alias_map[alias].lhs_alias - parent_louter = (parent_alias - and self.alias_map[parent_alias].join_type == self.LOUTER) - already_louter = self.alias_map[alias].join_type == self.LOUTER - if ((unconditional or self.alias_map[alias].nullable - or parent_louter) and not already_louter): - data = self.alias_map[alias]._replace(join_type=self.LOUTER) - self.alias_map[alias] = data - # Join type of 'alias' changed, so re-examine all aliases that - # refer to this one. - aliases.extend( - join for join in self.alias_map.keys() - if (self.alias_map[join].lhs_alias == alias - and join not in aliases)) - - def reset_refcounts(self, to_counts): - """ - This method will reset reference counts for aliases so that they match - the value passed in :param to_counts:. - """ - for alias, cur_refcount in self.alias_refcount.copy().items(): - unref_amount = cur_refcount - to_counts.get(alias, 0) - self.unref_alias(alias, unref_amount) - - def promote_disjunction(self, aliases_before, alias_usage_counts, - num_childs): - """ - This method is to be used for promoting joins in ORed filters. - - The principle for promotion is: any alias which is used (it is in - alias_usage_counts), is not used by every child of the ORed filter, - and isn't pre-existing needs to be promoted to LOUTER join. - """ - for alias, use_count in alias_usage_counts.items(): - if use_count < num_childs and alias not in aliases_before: - self.promote_joins([alias]) - - def change_aliases(self, change_map): - """ - Changes the aliases in change_map (which maps old-alias -> new-alias), - relabelling any references to them in select columns and the where - clause. - """ - assert set(change_map.keys()).intersection(set(change_map.values())) == set() - - def relabel_column(col): - if isinstance(col, (list, tuple)): - old_alias = col[0] - return (change_map.get(old_alias, old_alias), col[1]) - else: - return col.relabeled_clone(change_map) - # 1. Update references in "select" (normal columns plus aliases), - # "group by", "where" and "having". - self.where.relabel_aliases(change_map) - self.having.relabel_aliases(change_map) - if self.group_by: - self.group_by = [relabel_column(col) for col in self.group_by] - self.select = [SelectInfo(relabel_column(s.col), s.field) - for s in self.select] - self.aggregates = SortedDict( - (key, relabel_column(col)) for key, col in self.aggregates.items()) - - # 2. Rename the alias in the internal table/alias datastructures. - for ident, aliases in self.join_map.items(): - del self.join_map[ident] - aliases = tuple([change_map.get(a, a) for a in aliases]) - ident = (change_map.get(ident[0], ident[0]),) + ident[1:] - self.join_map[ident] = aliases - for old_alias, new_alias in six.iteritems(change_map): - alias_data = self.alias_map[old_alias] - alias_data = alias_data._replace(rhs_alias=new_alias) - self.alias_refcount[new_alias] = self.alias_refcount[old_alias] - del self.alias_refcount[old_alias] - self.alias_map[new_alias] = alias_data - del self.alias_map[old_alias] - - table_aliases = self.table_map[alias_data.table_name] - for pos, alias in enumerate(table_aliases): - if alias == old_alias: - table_aliases[pos] = new_alias - break - for pos, alias in enumerate(self.tables): - if alias == old_alias: - self.tables[pos] = new_alias - break - for key, alias in self.included_inherited_models.items(): - if alias in change_map: - self.included_inherited_models[key] = change_map[alias] - - # 3. Update any joins that refer to the old alias. - for alias, data in six.iteritems(self.alias_map): - lhs = data.lhs_alias - if lhs in change_map: - data = data._replace(lhs_alias=change_map[lhs]) - self.alias_map[alias] = data - - def bump_prefix(self, exceptions=()): - """ - Changes the alias prefix to the next letter in the alphabet and - relabels all the aliases. Even tables that previously had no alias will - get an alias after this call (it's mostly used for nested queries and - the outer query will already be using the non-aliased table name). - - Subclasses who create their own prefix should override this method to - produce a similar result (a new prefix and relabelled aliases). - - The 'exceptions' parameter is a container that holds alias names which - should not be changed. - """ - current = ord(self.alias_prefix) - assert current < ord('Z') - prefix = chr(current + 1) - self.alias_prefix = prefix - change_map = SortedDict() - for pos, alias in enumerate(self.tables): - if alias in exceptions: - continue - new_alias = '%s%d' % (prefix, pos) - change_map[alias] = new_alias - self.tables[pos] = new_alias - self.change_aliases(change_map) - - def get_initial_alias(self): - """ - Returns the first alias for this query, after increasing its reference - count. - """ - if self.tables: - alias = self.tables[0] - self.ref_alias(alias) - else: - alias = self.join((None, self.get_meta().db_table, None)) - return alias - - def count_active_tables(self): - """ - Returns the number of tables in this query with a non-zero reference - count. Note that after execution, the reference counts are zeroed, so - tables added in compiler will not be seen by this method. - """ - return len([1 for count in self.alias_refcount.values() if count]) - - def join(self, connection, reuse=None, outer_if_first=False, - nullable=False, join_field=None): - """ - Returns an alias for the join in 'connection', either reusing an - existing alias for that join or creating a new one. 'connection' is a - tuple (lhs, table, join_cols) where 'lhs' is either an existing - table alias or a table name. 'join_cols' is a tuple of tuples containing - columns to join on ((l_id1, r_id1), (l_id2, r_id2)). The join corresponds - to the SQL equivalent of:: - - lhs.l_id1 = table.r_id1 AND lhs.l_id2 = table.r_id2 - - The 'reuse' parameter can be either None which means all joins - (matching the connection) are reusable, or it can be a set containing - the aliases that can be reused. - - If 'outer_if_first' is True and a new join is created, it will have the - LOUTER join type. - - A join is always created as LOUTER if the lhs alias is LOUTER to make - sure we do not generate chains like t1 LOUTER t2 INNER t3. - - If 'nullable' is True, the join can potentially involve NULL values and - is a candidate for promotion (to "left outer") when combining querysets. - - The 'join_field' is the field we are joining along (if any). - """ - lhs, table, join_cols = connection - assert lhs is None or join_field is not None - existing = self.join_map.get(connection, ()) - if reuse is None: - reuse = existing - else: - reuse = [a for a in existing if a in reuse] - for alias in reuse: - if join_field and self.alias_map[alias].join_field != join_field: - # The join_map doesn't contain join_field (mainly because - # fields in Query structs are problematic in pickling), so - # check that the existing join is created using the same - # join_field used for the under work join. - continue - self.ref_alias(alias) - return alias - - # No reuse is possible, so we need a new alias. - alias, _ = self.table_alias(table, True) - if not lhs: - # Not all tables need to be joined to anything. No join type - # means the later columns are ignored. - join_type = None - elif outer_if_first or self.alias_map[lhs].join_type == self.LOUTER: - # We need to use LOUTER join if asked by outer_if_first or if the - # LHS table is left-joined in the query. - join_type = self.LOUTER - else: - join_type = self.INNER - join = JoinInfo(table, alias, join_type, lhs, join_cols or ((None, None),), nullable, - join_field) - self.alias_map[alias] = join - if connection in self.join_map: - self.join_map[connection] += (alias,) - else: - self.join_map[connection] = (alias,) - return alias - - def setup_inherited_models(self): - """ - If the model that is the basis for this QuerySet inherits other models, - we need to ensure that those other models have their tables included in - the query. - - We do this as a separate step so that subclasses know which - tables are going to be active in the query, without needing to compute - all the select columns (this method is called from pre_sql_setup(), - whereas column determination is a later part, and side-effect, of - as_sql()). - """ - opts = self.get_meta() - root_alias = self.tables[0] - seen = {None: root_alias} - - for field, model in opts.get_fields_with_model(): - if model not in seen: - self.join_parent_model(opts, model, root_alias, seen) - self.included_inherited_models = seen - - def join_parent_model(self, opts, model, alias, seen): - """ - Makes sure the given 'model' is joined in the query. If 'model' isn't - a parent of 'opts' or if it is None this method is a no-op. - - The 'alias' is the root alias for starting the join, 'seen' is a dict - of model -> alias of existing joins. It must also contain a mapping - of None -> some alias. This will be returned in the no-op case. - """ - if model in seen: - return seen[model] - chain = opts.get_base_chain(model) - if chain is None: - return alias - curr_opts = opts - for int_model in chain: - if int_model in seen: - return seen[int_model] - # Proxy model have elements in base chain - # with no parents, assign the new options - # object and skip to the next base in that - # case - if not curr_opts.parents[int_model]: - curr_opts = int_model._meta - continue - link_field = curr_opts.get_ancestor_link(int_model) - _, _, _, joins, _ = self.setup_joins( - [link_field.name], curr_opts, alias) - curr_opts = int_model._meta - alias = seen[int_model] = joins[-1] - return alias or seen[None] - - def remove_inherited_models(self): - """ - Undoes the effects of setup_inherited_models(). Should be called - whenever select columns (self.select) are set explicitly. - """ - for key, alias in self.included_inherited_models.items(): - if key: - self.unref_alias(alias) - self.included_inherited_models = {} - - - def add_aggregate(self, aggregate, model, alias, is_summary): - """ - Adds a single aggregate expression to the Query - """ - opts = model._meta - field_list = aggregate.lookup.split(LOOKUP_SEP) - if len(field_list) == 1 and aggregate.lookup in self.aggregates: - # Aggregate is over an annotation - field_name = field_list[0] - col = field_name - source = self.aggregates[field_name] - if not is_summary: - raise FieldError("Cannot compute %s('%s'): '%s' is an aggregate" % ( - aggregate.name, field_name, field_name)) - elif ((len(field_list) > 1) or - (field_list[0] not in [i.name for i in opts.fields]) or - self.group_by is None or - not is_summary): - # If: - # - the field descriptor has more than one part (foo__bar), or - # - the field descriptor is referencing an m2m/m2o field, or - # - this is a reference to a model field (possibly inherited), or - # - this is an annotation over a model field - # then we need to explore the joins that are required. - - field, sources, opts, join_list, path = self.setup_joins( - field_list, opts, self.get_initial_alias()) - - # Process the join chain to see if it can be trimmed - targets, _, join_list = self.trim_joins(sources, join_list, path) - - # If the aggregate references a model or field that requires a join, - # those joins must be LEFT OUTER - empty join rows must be returned - # in order for zeros to be returned for those aggregates. - self.promote_joins(join_list, True) - - col = targets[0].column - source = sources[0] - col = (join_list[-1], col) - else: - # The simplest cases. No joins required - - # just reference the provided column alias. - field_name = field_list[0] - source = opts.get_field(field_name) - col = field_name - - # Add the aggregate to the query - aggregate.add_to_query(self, alias, col=col, source=source, is_summary=is_summary) - - def build_filter(self, filter_expr, branch_negated=False, current_negated=False, - can_reuse=None): - """ - Builds a WhereNode for a single filter clause, but doesn't add it - to this Query. Query.add_q() will then add this filter to the where - or having Node. - - The 'branch_negated' tells us if the current branch contains any - negations. This will be used to determine if subqueries are needed. - - The 'current_negated' is used to determine if the current filter is - negated or not and this will be used to determine if IS NULL filtering - is needed. - - The difference between current_netageted and branch_negated is that - branch_negated is set on first negation, but current_negated is - flipped for each negation. - - Note that add_filter will not do any negating itself, that is done - upper in the code by add_q(). - - The 'can_reuse' is a set of reusable joins for multijoins. - - The method will create a filter clause that can be added to the current - query. However, if the filter isn't added to the query then the caller - is responsible for unreffing the joins used. - """ - arg, value = filter_expr - parts = arg.split(LOOKUP_SEP) - if not parts: - raise FieldError("Cannot parse keyword query %r" % arg) - - # Work out the lookup type and remove it from the end of 'parts', - # if necessary. - lookup_type = 'exact' # Default lookup type - num_parts = len(parts) - if (len(parts) > 1 and parts[-1] in self.query_terms - and arg not in self.aggregates): - # Traverse the lookup query to distinguish related fields from - # lookup types. - lookup_model = self.model - for counter, field_name in enumerate(parts): - try: - lookup_field = lookup_model._meta.get_field(field_name) - except FieldDoesNotExist: - # Not a field. Bail out. - lookup_type = parts.pop() - break - # Unless we're at the end of the list of lookups, let's attempt - # to continue traversing relations. - if (counter + 1) < num_parts: - try: - lookup_model = lookup_field.rel.to - except AttributeError: - # Not a related field. Bail out. - lookup_type = parts.pop() - break - - clause = self.where_class() - # Interpret '__exact=None' as the sql 'is NULL'; otherwise, reject all - # uses of None as a query value. - if value is None: - if lookup_type != 'exact': - raise ValueError("Cannot use None as a query value") - lookup_type = 'isnull' - value = True - elif callable(value): - value = value() - elif isinstance(value, ExpressionNode): - # If value is a query expression, evaluate it - value = SQLEvaluator(value, self, reuse=can_reuse) - # For Oracle '' is equivalent to null. The check needs to be done - # at this stage because join promotion can't be done at compiler - # stage. Using DEFAULT_DB_ALIAS isn't nice, but it is the best we - # can do here. Similar thing is done in is_nullable(), too. - if (connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls and - lookup_type == 'exact' and value == ''): - value = True - lookup_type = 'isnull' - - for alias, aggregate in self.aggregates.items(): - if alias in (parts[0], LOOKUP_SEP.join(parts)): - clause.add((aggregate, lookup_type, value), AND) - return clause - - opts = self.get_meta() - alias = self.get_initial_alias() - allow_many = not branch_negated - - try: - field, sources, opts, join_list, path = self.setup_joins( - parts, opts, alias, can_reuse, allow_many, - allow_explicit_fk=True) - if can_reuse is not None: - can_reuse.update(join_list) - except MultiJoin as e: - return self.split_exclude(filter_expr, LOOKUP_SEP.join(parts[:e.level]), - can_reuse, e.names_with_path) - - if (lookup_type == 'isnull' and value is True and not current_negated and - len(join_list) > 1): - # If the comparison is against NULL, we may need to use some left - # outer joins when creating the join chain. This is only done when - # needed, as it's less efficient at the database level. - self.promote_joins(join_list) - - # Process the join list to see if we can remove any inner joins from - # the far end (fewer tables in a query is better). Note that join - # promotion must happen before join trimming to have the join type - # information available when reusing joins. - targets, alias, join_list = self.trim_joins(sources, join_list, path) - - if hasattr(field, 'get_lookup_constraint'): - constraint = field.get_lookup_constraint(self.where_class, alias, targets, sources, - lookup_type, value) - else: - constraint = (Constraint(alias, targets[0].column, field), lookup_type, value) - clause.add(constraint, AND) - if current_negated and (lookup_type != 'isnull' or value is False): - self.promote_joins(join_list) - if (lookup_type != 'isnull' and ( - self.is_nullable(targets[0]) or - self.alias_map[join_list[-1]].join_type == self.LOUTER)): - # The condition added here will be SQL like this: - # NOT (col IS NOT NULL), where the first NOT is added in - # upper layers of code. The reason for addition is that if col - # is null, then col != someval will result in SQL "unknown" - # which isn't the same as in Python. The Python None handling - # is wanted, and it can be gotten by - # (col IS NULL OR col != someval) - # <=> - # NOT (col IS NOT NULL AND col = someval). - clause.add((Constraint(alias, targets[0].column, None), 'isnull', False), AND) - return clause - - def add_filter(self, filter_clause): - self.where.add(self.build_filter(filter_clause), 'AND') - - def need_having(self, obj): - """ - Returns whether or not all elements of this q_object need to be put - together in the HAVING clause. - """ - if not isinstance(obj, Node): - return (refs_aggregate(obj[0].split(LOOKUP_SEP), self.aggregates) - or (hasattr(obj[1], 'contains_aggregate') - and obj[1].contains_aggregate(self.aggregates))) - return any(self.need_having(c) for c in obj.children) - - def split_having_parts(self, q_object, negated=False): - """ - Returns a list of q_objects which need to go into the having clause - instead of the where clause. Removes the splitted out nodes from the - given q_object. Note that the q_object is altered, so cloning it is - needed. - """ - having_parts = [] - for c in q_object.children[:]: - # When constucting the having nodes we need to take care to - # preserve the negation status from the upper parts of the tree - if isinstance(c, Node): - # For each negated child, flip the in_negated flag. - in_negated = c.negated ^ negated - if c.connector == OR and self.need_having(c): - # A subtree starting from OR clause must go into having in - # whole if any part of that tree references an aggregate. - q_object.children.remove(c) - having_parts.append(c) - c.negated = in_negated - else: - having_parts.extend( - self.split_having_parts(c, in_negated)[1]) - elif self.need_having(c): - q_object.children.remove(c) - new_q = self.where_class(children=[c], negated=negated) - having_parts.append(new_q) - return q_object, having_parts - - def add_q(self, q_object): - """ - A preprocessor for the internal _add_q(). Responsible for - splitting the given q_object into where and having parts and - setting up some internal variables. - """ - if not self.need_having(q_object): - where_part, having_parts = q_object, [] - else: - where_part, having_parts = self.split_having_parts( - q_object.clone(), q_object.negated) - used_aliases = self.used_aliases - clause = self._add_q(where_part, used_aliases) - self.where.add(clause, AND) - for hp in having_parts: - clause = self._add_q(hp, used_aliases) - self.having.add(clause, AND) - if self.filter_is_sticky: - self.used_aliases = used_aliases - - def _add_q(self, q_object, used_aliases, branch_negated=False, - current_negated=False): - """ - Adds a Q-object to the current filter. - """ - connector = q_object.connector - current_negated = current_negated ^ q_object.negated - branch_negated = branch_negated or q_object.negated - target_clause = self.where_class(connector=connector, - negated=q_object.negated) - # Treat case NOT (a AND b) like case ((NOT a) OR (NOT b)) for join - # promotion. See ticket #21748. - effective_connector = connector - if current_negated: - effective_connector = OR if effective_connector == AND else AND - if effective_connector == OR: - alias_usage_counts = dict() - aliases_before = set(self.tables) - for child in q_object.children: - if effective_connector == OR: - refcounts_before = self.alias_refcount.copy() - if isinstance(child, Node): - child_clause = self._add_q( - child, used_aliases, branch_negated, - current_negated) - else: - child_clause = self.build_filter( - child, can_reuse=used_aliases, branch_negated=branch_negated, - current_negated=current_negated) - target_clause.add(child_clause, connector) - if effective_connector == OR: - used = alias_diff(refcounts_before, self.alias_refcount) - for alias in used: - alias_usage_counts[alias] = alias_usage_counts.get(alias, 0) + 1 - if effective_connector == OR: - self.promote_disjunction(aliases_before, alias_usage_counts, - len(q_object.children)) - return target_clause - - def names_to_path(self, names, opts, allow_many, allow_explicit_fk): - """ - Walks the names path and turns them PathInfo tuples. Note that a - single name in 'names' can generate multiple PathInfos (m2m for - example). - - 'names' is the path of names to travle, 'opts' is the model Options we - start the name resolving from, 'allow_many' and 'allow_explicit_fk' - are as for setup_joins(). - - Returns a list of PathInfo tuples. In addition returns the final field - (the last used join field), and target (which is a field guaranteed to - contain the same value as the final field). - """ - path, names_with_path = [], [] - for pos, name in enumerate(names): - cur_names_with_path = (name, []) - if name == 'pk': - name = opts.pk.name - try: - field, model, direct, m2m = opts.get_field_by_name(name) - except FieldDoesNotExist: - for f in opts.fields: - if allow_explicit_fk and name == f.attname: - # XXX: A hack to allow foo_id to work in values() for - # backwards compatibility purposes. If we dropped that - # feature, this could be removed. - field, model, direct, m2m = opts.get_field_by_name(f.name) - break - else: - available = opts.get_all_field_names() + list(self.aggregate_select) - raise FieldError("Cannot resolve keyword %r into field. " - "Choices are: %s" % (name, ", ".join(available))) - # Check if we need any joins for concrete inheritance cases (the - # field lives in parent, but we are currently in one of its - # children) - if model: - # The field lives on a base class of the current model. - # Skip the chain of proxy to the concrete proxied model - proxied_model = opts.concrete_model - - for int_model in opts.get_base_chain(model): - if int_model is proxied_model: - opts = int_model._meta - else: - final_field = opts.parents[int_model] - targets = (final_field.rel.get_related_field(),) - opts = int_model._meta - path.append(PathInfo(final_field.model._meta, opts, targets, final_field, False, True)) - cur_names_with_path[1].append(PathInfo(final_field.model._meta, opts, targets, final_field, False, True)) - if hasattr(field, 'get_path_info'): - pathinfos = field.get_path_info() - if not allow_many: - for inner_pos, p in enumerate(pathinfos): - if p.m2m: - cur_names_with_path[1].extend(pathinfos[0:inner_pos + 1]) - names_with_path.append(cur_names_with_path) - raise MultiJoin(pos + 1, names_with_path) - last = pathinfos[-1] - path.extend(pathinfos) - final_field = last.join_field - opts = last.to_opts - targets = last.target_fields - cur_names_with_path[1].extend(pathinfos) - names_with_path.append(cur_names_with_path) - else: - # Local non-relational field. - final_field = field - targets = (field,) - break - - if pos != len(names) - 1: - if pos == len(names) - 2: - raise FieldError( - "Join on field %r not permitted. Did you misspell %r for " - "the lookup type?" % (name, names[pos + 1])) - else: - raise FieldError("Join on field %r not permitted." % name) - return path, final_field, targets - - def setup_joins(self, names, opts, alias, can_reuse=None, allow_many=True, - allow_explicit_fk=False, outer_if_first=False): - """ - Compute the necessary table joins for the passage through the fields - given in 'names'. 'opts' is the Options class for the current model - (which gives the table we are starting from), 'alias' is the alias for - the table to start the joining from. - - The 'can_reuse' defines the reverse foreign key joins we can reuse. It - can be None in which case all joins are reusable or a set of aliases - that can be reused. Note that non-reverse foreign keys are always - reusable when using setup_joins(). - - If 'allow_many' is False, then any reverse foreign key seen will - generate a MultiJoin exception. - - The 'allow_explicit_fk' controls if field.attname is allowed in the - lookups. - - Returns the final field involved in the joins, the target field (used - for any 'where' constraint), the final 'opts' value, the joins and the - field path travelled to generate the joins. - - The target field is the field containing the concrete value. Final - field can be something different, for example foreign key pointing to - that value. Final field is needed for example in some value - conversions (convert 'obj' in fk__id=obj to pk val using the foreign - key field for example). - """ - joins = [alias] - # First, generate the path for the names - path, final_field, targets = self.names_to_path( - names, opts, allow_many, allow_explicit_fk) - # Then, add the path to the query's joins. Note that we can't trim - # joins at this stage - we will need the information about join type - # of the trimmed joins. - for pos, join in enumerate(path): - opts = join.to_opts - if join.direct: - nullable = self.is_nullable(join.join_field) - else: - nullable = True - connection = alias, opts.db_table, join.join_field.get_joining_columns() - reuse = can_reuse if join.m2m else None - alias = self.join( - connection, reuse=reuse, nullable=nullable, join_field=join.join_field, - outer_if_first=outer_if_first) - joins.append(alias) - if hasattr(final_field, 'field'): - final_field = final_field.field - return final_field, targets, opts, joins, path - - def trim_joins(self, targets, joins, path): - """ - The 'target' parameter is the final field being joined to, 'joins' - is the full list of join aliases. The 'path' contain the PathInfos - used to create the joins. - - Returns the final target field and table alias and the new active - joins. - - We will always trim any direct join if we have the target column - available already in the previous table. Reverse joins can't be - trimmed as we don't know if there is anything on the other side of - the join. - """ - for pos, info in enumerate(reversed(path)): - if len(joins) == 1 or not info.direct: - break - join_targets = set(t.column for t in info.join_field.foreign_related_fields) - cur_targets = set(t.column for t in targets) - if not cur_targets.issubset(join_targets): - break - targets = tuple(r[0] for r in info.join_field.related_fields if r[1].column in cur_targets) - self.unref_alias(joins.pop()) - return targets, joins[-1], joins - - def split_exclude(self, filter_expr, prefix, can_reuse, names_with_path): - """ - When doing an exclude against any kind of N-to-many relation, we need - to use a subquery. This method constructs the nested query, given the - original exclude filter (filter_expr) and the portion up to the first - N-to-many relation field. - - As an example we could have original filter ~Q(child__name='foo'). - We would get here with filter_expr = child__name, prefix = child and - can_reuse is a set of joins usable for filters in the original query. - - We will turn this into equivalent of: - WHERE NOT (pk IN (SELECT parent_id FROM thetable - WHERE name = 'foo' AND parent_id IS NOT NULL)) - - It might be worth it to consider using WHERE NOT EXISTS as that has - saner null handling, and is easier for the backend's optimizer to - handle. - """ - # Generate the inner query. - query = Query(self.model) - query.where.add(query.build_filter(filter_expr), AND) - query.bump_prefix() - query.clear_ordering(True) - # Try to have as simple as possible subquery -> trim leading joins from - # the subquery. - trimmed_prefix, contains_louter = query.trim_start(names_with_path) - query.remove_inherited_models() - - # Add extra check to make sure the selected field will not be null - # since we are adding a IN <subquery> clause. This prevents the - # database from tripping over IN (...,NULL,...) selects and returning - # nothing - if self.is_nullable(query.select[0].field): - alias, col = query.select[0].col - query.where.add((Constraint(alias, col, query.select[0].field), 'isnull', False), AND) - - condition = self.build_filter( - ('%s__in' % trimmed_prefix, query), - current_negated=True, branch_negated=True, can_reuse=can_reuse) - if contains_louter: - or_null_condition = self.build_filter( - ('%s__isnull' % trimmed_prefix, True), - current_negated=True, branch_negated=True, can_reuse=can_reuse) - condition.add(or_null_condition, OR) - # Note that the end result will be: - # (outercol NOT IN innerq AND outercol IS NOT NULL) OR outercol IS NULL. - # This might look crazy but due to how IN works, this seems to be - # correct. If the IS NOT NULL check is removed then outercol NOT - # IN will return UNKNOWN. If the IS NULL check is removed, then if - # outercol IS NULL we will not match the row. - return condition - - def set_empty(self): - self.where = EmptyWhere() - self.having = EmptyWhere() - - def is_empty(self): - return isinstance(self.where, EmptyWhere) or isinstance(self.having, EmptyWhere) - - def set_limits(self, low=None, high=None): - """ - Adjusts the limits on the rows retrieved. We use low/high to set these, - as it makes it more Pythonic to read and write. When the SQL query is - created, they are converted to the appropriate offset and limit values. - - Any limits passed in here are applied relative to the existing - constraints. So low is added to the current low value and both will be - clamped to any existing high value. - """ - if high is not None: - if self.high_mark is not None: - self.high_mark = min(self.high_mark, self.low_mark + high) - else: - self.high_mark = self.low_mark + high - if low is not None: - if self.high_mark is not None: - self.low_mark = min(self.high_mark, self.low_mark + low) - else: - self.low_mark = self.low_mark + low - - def clear_limits(self): - """ - Clears any existing limits. - """ - self.low_mark, self.high_mark = 0, None - - def can_filter(self): - """ - Returns True if adding filters to this instance is still possible. - - Typically, this means no limits or offsets have been put on the results. - """ - return not self.low_mark and self.high_mark is None - - def clear_select_clause(self): - """ - Removes all fields from SELECT clause. - """ - self.select = [] - self.default_cols = False - self.select_related = False - self.set_extra_mask(()) - self.set_aggregate_mask(()) - - def clear_select_fields(self): - """ - Clears the list of fields to select (but not extra_select columns). - Some queryset types completely replace any existing list of select - columns. - """ - self.select = [] - - def add_distinct_fields(self, *field_names): - """ - Adds and resolves the given fields to the query's "distinct on" clause. - """ - self.distinct_fields = field_names - self.distinct = True - - def add_fields(self, field_names, allow_m2m=True): - """ - Adds the given (model) fields to the select set. The field names are - added in the order specified. - """ - alias = self.get_initial_alias() - opts = self.get_meta() - - try: - for name in field_names: - field, targets, u2, joins, path = self.setup_joins( - name.split(LOOKUP_SEP), opts, alias, None, allow_m2m, - allow_explicit_fk=True, outer_if_first=True) - - # Trim last join if possible - targets, final_alias, remaining_joins = self.trim_joins(targets, joins[-2:], path) - joins = joins[:-2] + remaining_joins - - self.promote_joins(joins[1:]) - for target in targets: - self.select.append(SelectInfo((final_alias, target.column), target)) - except MultiJoin: - raise FieldError("Invalid field name: '%s'" % name) - except FieldError: - if LOOKUP_SEP in name: - # For lookups spanning over relationships, show the error - # from the model on which the lookup failed. - raise - else: - names = sorted(opts.get_all_field_names() + list(self.extra) - + list(self.aggregate_select)) - raise FieldError("Cannot resolve keyword %r into field. " - "Choices are: %s" % (name, ", ".join(names))) - self.remove_inherited_models() - - def add_ordering(self, *ordering): - """ - Adds items from the 'ordering' sequence to the query's "order by" - clause. These items are either field names (not column names) -- - possibly with a direction prefix ('-' or '?') -- or ordinals, - corresponding to column positions in the 'select' list. - - If 'ordering' is empty, all ordering is cleared from the query. - """ - errors = [] - for item in ordering: - if not ORDER_PATTERN.match(item): - errors.append(item) - if errors: - raise FieldError('Invalid order_by arguments: %s' % errors) - if ordering: - self.order_by.extend(ordering) - else: - self.default_ordering = False - - def clear_ordering(self, force_empty): - """ - Removes any ordering settings. If 'force_empty' is True, there will be - no ordering in the resulting query (not even the model's default). - """ - self.order_by = [] - self.extra_order_by = () - if force_empty: - self.default_ordering = False - - def set_group_by(self): - """ - Expands the GROUP BY clause required by the query. - - This will usually be the set of all non-aggregate fields in the - return data. If the database backend supports grouping by the - primary key, and the query would be equivalent, the optimization - will be made automatically. - """ - self.group_by = [] - - for col, _ in self.select: - self.group_by.append(col) - - def add_count_column(self): - """ - Converts the query to do count(...) or count(distinct(pk)) in order to - get its size. - """ - if not self.distinct: - if not self.select: - count = self.aggregates_module.Count('*', is_summary=True) - else: - assert len(self.select) == 1, \ - "Cannot add count col with multiple cols in 'select': %r" % self.select - count = self.aggregates_module.Count(self.select[0].col) - else: - opts = self.get_meta() - if not self.select: - count = self.aggregates_module.Count( - (self.join((None, opts.db_table, None)), opts.pk.column), - is_summary=True, distinct=True) - else: - # Because of SQL portability issues, multi-column, distinct - # counts need a sub-query -- see get_count() for details. - assert len(self.select) == 1, \ - "Cannot add count col with multiple cols in 'select'." - - count = self.aggregates_module.Count(self.select[0].col, distinct=True) - # Distinct handling is done in Count(), so don't do it at this - # level. - self.distinct = False - - # Set only aggregate to be the count column. - # Clear out the select cache to reflect the new unmasked aggregates. - self.aggregates = {None: count} - self.set_aggregate_mask(None) - self.group_by = None - - def add_select_related(self, fields): - """ - Sets up the select_related data structure so that we only select - certain related models (as opposed to all models, when - self.select_related=True). - """ - field_dict = {} - for field in fields: - d = field_dict - for part in field.split(LOOKUP_SEP): - d = d.setdefault(part, {}) - self.select_related = field_dict - self.related_select_cols = [] - - def add_extra(self, select, select_params, where, params, tables, order_by): - """ - Adds data to the various extra_* attributes for user-created additions - to the query. - """ - if select: - # We need to pair any placeholder markers in the 'select' - # dictionary with their parameters in 'select_params' so that - # subsequent updates to the select dictionary also adjust the - # parameters appropriately. - select_pairs = SortedDict() - if select_params: - param_iter = iter(select_params) - else: - param_iter = iter([]) - for name, entry in select.items(): - entry = force_text(entry) - entry_params = [] - pos = entry.find("%s") - while pos != -1: - entry_params.append(next(param_iter)) - pos = entry.find("%s", pos + 2) - select_pairs[name] = (entry, entry_params) - # This is order preserving, since self.extra_select is a SortedDict. - self.extra.update(select_pairs) - if where or params: - self.where.add(ExtraWhere(where, params), AND) - if tables: - self.extra_tables += tuple(tables) - if order_by: - self.extra_order_by = order_by - - def clear_deferred_loading(self): - """ - Remove any fields from the deferred loading set. - """ - self.deferred_loading = (set(), True) - - def add_deferred_loading(self, field_names): - """ - Add the given list of model field names to the set of fields to - exclude from loading from the database when automatic column selection - is done. The new field names are added to any existing field names that - are deferred (or removed from any existing field names that are marked - as the only ones for immediate loading). - """ - # Fields on related models are stored in the literal double-underscore - # format, so that we can use a set datastructure. We do the foo__bar - # splitting and handling when computing the SQL colum names (as part of - # get_columns()). - existing, defer = self.deferred_loading - if defer: - # Add to existing deferred names. - self.deferred_loading = existing.union(field_names), True - else: - # Remove names from the set of any existing "immediate load" names. - self.deferred_loading = existing.difference(field_names), False - - def add_immediate_loading(self, field_names): - """ - Add the given list of model field names to the set of fields to - retrieve when the SQL is executed ("immediate loading" fields). The - field names replace any existing immediate loading field names. If - there are field names already specified for deferred loading, those - names are removed from the new field_names before storing the new names - for immediate loading. (That is, immediate loading overrides any - existing immediate values, but respects existing deferrals.) - """ - existing, defer = self.deferred_loading - field_names = set(field_names) - if 'pk' in field_names: - field_names.remove('pk') - field_names.add(self.get_meta().pk.name) - - if defer: - # Remove any existing deferred names from the current set before - # setting the new names. - self.deferred_loading = field_names.difference(existing), False - else: - # Replace any existing "immediate load" field names. - self.deferred_loading = field_names, False - - def get_loaded_field_names(self): - """ - If any fields are marked to be deferred, returns a dictionary mapping - models to a set of names in those fields that will be loaded. If a - model is not in the returned dictionary, none of it's fields are - deferred. - - If no fields are marked for deferral, returns an empty dictionary. - """ - # We cache this because we call this function multiple times - # (compiler.fill_related_selections, query.iterator) - try: - return self._loaded_field_names_cache - except AttributeError: - collection = {} - self.deferred_to_data(collection, self.get_loaded_field_names_cb) - self._loaded_field_names_cache = collection - return collection - - def get_loaded_field_names_cb(self, target, model, fields): - """ - Callback used by get_deferred_field_names(). - """ - target[model] = set([f.name for f in fields]) - - def set_aggregate_mask(self, names): - "Set the mask of aggregates that will actually be returned by the SELECT" - if names is None: - self.aggregate_select_mask = None - else: - self.aggregate_select_mask = set(names) - self._aggregate_select_cache = None - - def set_extra_mask(self, names): - """ - Set the mask of extra select items that will be returned by SELECT, - we don't actually remove them from the Query since they might be used - later - """ - if names is None: - self.extra_select_mask = None - else: - self.extra_select_mask = set(names) - self._extra_select_cache = None - - def _aggregate_select(self): - """The SortedDict of aggregate columns that are not masked, and should - be used in the SELECT clause. - - This result is cached for optimization purposes. - """ - if self._aggregate_select_cache is not None: - return self._aggregate_select_cache - elif self.aggregate_select_mask is not None: - self._aggregate_select_cache = SortedDict([ - (k,v) for k,v in self.aggregates.items() - if k in self.aggregate_select_mask - ]) - return self._aggregate_select_cache - else: - return self.aggregates - aggregate_select = property(_aggregate_select) - - def _extra_select(self): - if self._extra_select_cache is not None: - return self._extra_select_cache - elif self.extra_select_mask is not None: - self._extra_select_cache = SortedDict([ - (k,v) for k,v in self.extra.items() - if k in self.extra_select_mask - ]) - return self._extra_select_cache - else: - return self.extra - extra_select = property(_extra_select) - - def trim_start(self, names_with_path): - """ - Trims joins from the start of the join path. The candidates for trim - are the PathInfos in names_with_path structure that are m2m joins. - - Also sets the select column so the start matches the join. - - This method is meant to be used for generating the subquery joins & - cols in split_exclude(). - - Returns a lookup usable for doing outerq.filter(lookup=self). Returns - also if the joins in the prefix contain a LEFT OUTER join. - _""" - all_paths = [] - for _, paths in names_with_path: - all_paths.extend(paths) - contains_louter = False - for pos, path in enumerate(all_paths): - if path.m2m: - break - if self.alias_map[self.tables[pos + 1]].join_type == self.LOUTER: - contains_louter = True - self.unref_alias(self.tables[pos]) - # The path.join_field is a Rel, lets get the other side's field - join_field = path.join_field.field - # Build the filter prefix. - trimmed_prefix = [] - paths_in_prefix = pos - for name, path in names_with_path: - if paths_in_prefix - len(path) < 0: - break - trimmed_prefix.append(name) - paths_in_prefix -= len(path) - trimmed_prefix.append( - join_field.foreign_related_fields[0].name) - trimmed_prefix = LOOKUP_SEP.join(trimmed_prefix) - # Lets still see if we can trim the first join from the inner query - # (that is, self). We can't do this for LEFT JOINs because we would - # miss those rows that have nothing on the outer side. - if self.alias_map[self.tables[pos + 1]].join_type != self.LOUTER: - select_fields = [r[0] for r in join_field.related_fields] - select_alias = self.tables[pos + 1] - self.unref_alias(self.tables[pos]) - extra_restriction = join_field.get_extra_restriction( - self.where_class, None, self.tables[pos + 1]) - if extra_restriction: - self.where.add(extra_restriction, AND) - else: - # TODO: It might be possible to trim more joins from the start of the - # inner query if it happens to have a longer join chain containing the - # values in select_fields. Lets punt this one for now. - select_fields = [r[1] for r in join_field.related_fields] - select_alias = self.tables[pos] - self.select = [SelectInfo((select_alias, f.column), f) for f in select_fields] - return trimmed_prefix, contains_louter - - def is_nullable(self, field): - """ - A helper to check if the given field should be treated as nullable. - - Some backends treat '' as null and Django treats such fields as - nullable for those backends. In such situations field.null can be - False even if we should treat the field as nullable. - """ - # We need to use DEFAULT_DB_ALIAS here, as QuerySet does not have - # (nor should it have) knowledge of which connection is going to be - # used. The proper fix would be to defer all decisions where - # is_nullable() is needed to the compiler stage, but that is not easy - # to do currently. - if ((connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls) - and field.empty_strings_allowed): - return True - else: - return field.null - -def get_order_dir(field, default='ASC'): - """ - Returns the field name and direction for an order specification. For - example, '-foo' is returned as ('foo', 'DESC'). - - The 'default' param is used to indicate which way no prefix (or a '+' - prefix) should sort. The '-' prefix always sorts the opposite way. - """ - dirn = ORDER_DIR[default] - if field[0] == '-': - return field[1:], dirn[1] - return field, dirn[0] - - -def add_to_dict(data, key, value): - """ - A helper function to add "value" to the set of values for "key", whether or - not "key" already exists. - """ - if key in data: - data[key].add(value) - else: - data[key] = set([value]) - -def is_reverse_o2o(field): - """ - A little helper to check if the given field is reverse-o2o. The field is - expected to be some sort of relation field or related object. - """ - return not hasattr(field, 'rel') and field.field.unique - -def alias_diff(refcounts_before, refcounts_after): - """ - Given the before and after copies of refcounts works out which aliases - have been added to the after copy. - """ - # Use -1 as default value so that any join that is created, then trimmed - # is seen as added. - return set(t for t in refcounts_after - if refcounts_after[t] > refcounts_before.get(t, -1)) |