1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5 Force Torque and Shaft power Measurement"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5_1 pgno:204"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x=(Sg*sig_f*(1+v))/(2*E)\n",
"('a voltmeter with a maximum range of mV is suitable for measurement', 94.9385766342288)\n",
"Round it off to get the suitable range voltmeter\n"
]
}
],
"source": [
"#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
"#Caption : Load cell\n",
"# Example 1# Page 294\n",
"from math import sqrt\n",
"\n",
"Sg=2.; # Strain gage factor\n",
"Rg=120.; # Gage resistance\n",
"v=0.3 # poissons ratio\n",
"E=210*10**9; # for steel\n",
"Pd=1. #('enter the power dissipation capacity=:')\n",
"# Looking for a suitable voltage measuring system\n",
"sig_f=700*10**6 #('enter the fatigue strength=:')\n",
"P_max=10000. #('enter the maximum load=:')\n",
"# For a load cell of square cross-section d,\n",
"d=sqrt(P_max/sig_f);\n",
"Ei=sqrt(4*Rg*Pd) #input excitation to the bridge circuit\n",
"x=(Sg*sig_f*(1+v))/(2*E);\n",
"dEo_max=x*Ei*10**3;\n",
"print (\"x=(Sg*sig_f*(1+v))/(2*E)\")\n",
"print ('a voltmeter with a maximum range of mV is suitable for measurement',dEo_max)\n",
"print (\"Round it off to get the suitable range voltmeter\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5_2 pgno:295"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('(dE/V)_max= d\\n ', 4285714.285714285)\n",
"Sensitivity of this load cell is nV/N/per unit excitation 42.8571428571\n"
]
}
],
"source": [
"#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
"#Caption : Load cell\n",
"# Example 2# Page 295\n",
"\n",
"b=.2 #('enter the width of load cell=:')\n",
"h=.05 #('enter the thickness of load cell=:')\n",
"Sg=2.;\n",
"Rg=120.;\n",
"sig_f=150*10**6 #('enter the fatigue strength=:')\n",
"E=70.; #(in GPa) for aluminium\n",
"v=0.33; #poissons ratio\n",
"# Let dE/V_max be represented by W\n",
"W=Sg*sig_f/E;\n",
"print('(dE/V)_max= d\\n ',W)\n",
"P_max=100000. #('enter the value of maximum load=:')\n",
"l=sig_f*b*h**2/(6*P_max);\n",
"\n",
"S=(6*Sg*l)/(E*b*h**2);\n",
"print'Sensitivity of this load cell is nV/N/per unit excitation',S\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5_3 pgno:296"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sensitivity of this load cell is micro V/N\n",
"0.13\n",
"The maximum density that can be achieved without endangering the strain gage sensors is micro V/N\n",
"0.284815729903\n",
"The voltage ratio is mV/V 3.9\n"
]
}
],
"source": [
"#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
"#Caption : Load cell\n",
"# Example 3# Page 296\n",
"from math import sqrt\n",
"Sg=2;\n",
"v=0.3; #poissons ratio\n",
"Ei=10. #('enter the excitation voltage=:')\n",
"A=5*10**-4 #('enter the area of load cell=:')\n",
"E=200.; #(in Gpa) Youngs modulus\n",
"# Let sensitivity Eo/P be represented by Se\n",
"Se=Sg*(1+v)*Ei/(2*A*E)*.001;\n",
"print'Sensitivity of this load cell is micro V/N\\n',Se\n",
"Rg=120. #given\n",
"Pd=1. #('enter the power dissipated in each gage=:')\n",
"Ei_max=sqrt(4*Rg*Pd)\n",
"Se_max=Sg*(1+v)*Ei_max/(2*A*E)*.001\n",
"print'The maximum density that can be achieved without endangering the strain gage sensors is micro V/N\\n',Se_max\n",
"# Let (Eo/Ei)_max be represented by Em\n",
"sig_f=600*10**6 #('enter the fatigue strength=:')\n",
"Em=Sg*sig_f*(1+v)/(2*E)*10**-6\n",
"print'The voltage ratio is mV/V',Em\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5_4 pgno:302"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('Relative displacement is d', 1.9999999999999997e-08)\n",
"wnc**2 is approx. 10**9. So,\n",
"Z is approx. 20nm(rms)\n",
"Actual force transmitted to the plate is d N 18.0260791198\n"
]
}
],
"source": [
"#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
"#Caption : Piezoelectric Transducers\n",
"# Example 4# Page 302\n",
"from math import sqrt,pi\n",
"mc=0.04 #('enter the connector mass=:')\n",
"m=0.01 #('enter the seismic mass=:')\n",
"k=10**9 #('enter the stiffness of the sensing element=:')\n",
"Sf=.005 #('enter the sensitivity of the transducer=:')\n",
"Xi=100*10**-6 # ('enter the displacement amplitude of the shaker vibration=:')\n",
"Eo=.1 #('enter the reading of voltage recorder connected to the transducer=:')\n",
"wnc=sqrt(k/(m+mc));\n",
"R=20; #20N (rms)\n",
"Z=(1/(m+mc))*(1/wnc**2)*R;\n",
"print('Relative displacement is d',Z)\n",
"print(\"wnc**2 is approx. 10**9. So,\")\n",
"print(\"Z is approx. 20nm(rms)\")\n",
"f=100.; # given\n",
"\n",
"F=R-((2*pi*f)**2*(m+mc)*Xi);\n",
"print'Actual force transmitted to the plate is d N',F\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5_5 pgno:308"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The load torque is d N-m 1636.24617374\n"
]
}
],
"source": [
"#CHAPTER 5_ Force,Torque and Shaft Power Measurement\n",
"#Caption : Torque measurement on rotating shaft\n",
"# Example 5# Page 308\n",
"Sg=2.;\n",
"Rg=120.;\n",
"G=80*10**9 #('enter the sheer modulus of elasticity=:')\n",
"D=0.05 #('enter the shaft diameter=:')\n",
"dR=0.1 # given\n",
"# we have to find the load torque\n",
"from math import pi\n",
"\n",
"y=2*dR/(Rg*Sg);\n",
"tou_xy=y*G;\n",
"j=pi*D**4;\n",
"T=tou_xy*2*j/(D*32);\n",
"print'The load torque is d N-m',T"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|