1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
{
"metadata": {
"name": "",
"signature": "sha256:cb7821e52dda76fa27e45154f9c14ca9fa493fbd763be86cc9be92d018411582"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 1 - Breakdown Mechanism of Gases Liquid and Solid Materials"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 1.1 - PG NO.51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Chapter 1,Example 1.1 Page 51\n",
"import math\n",
"I = 600. # micor amps\n",
"x = 0.5 # distance in cm\n",
"V = 10. # kV\n",
"I2 = 60. # micro amps\n",
"x2 = 0.1 # distance in cm \n",
"#Calculation 600 = I0*exp(0.5*alpha) and 60 = I0*exp(0.1*alpha)\n",
"alpha =math.log(600./60.)/(0.5-0.1)\n",
"print'%s %.3f %s' %(\"Townsends first ionising coefficient = \",alpha,\" ionizing collisions/cm\")\n",
"\n",
"#Answers may vary due to round of error \n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Townsends first ionising coefficient = 5.756 ionizing collisions/cm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 1.2 - PG NO.52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Chapter 1,Example 1.2 Page 52\n",
"import math\n",
"# Refering the table in example 1.2\n",
"# slope between any two points (math.log(I/I0)/x)\n",
"# taking the gap between 2 and 2.5 mm\n",
"I1= 1.5*10**-12\n",
"I2= 5.6*10**-12\n",
"I0 = 6*10**-14\n",
"gi1 = math.log(I1/I0) # gradual increase when gap is 2\n",
"gi2 = math.log(I2/I0) # gradual increase when gap is 2.5 #claculation in text is wrong\n",
"slope = (gi1-gi2)/0.05\n",
"print'%s %.3f %s' %(\"Slope = \", -slope,'\\n') \n",
"#evaluvating ghama\n",
"e1 = math.exp(-slope*0.5)\n",
"e2 = math.exp(-slope*0.5) # -1 is ignored due to the large magnitude\n",
"ghama = (7*10**7-6*e1)/(e2*7*10**7)\n",
"print'%s %.3f %s' %(\"Ghama for set 1= \", ghama*100000,\"*10^-5 /cm \\n \")\n",
"#Gap between the slope for set 2\n",
"alpha = math.log(12./8.)/0.05\n",
"print'%s %.1f %s' %(\"Alpha = \", alpha,\" collosions/cm \\n\")\n",
"e1 = math.exp(alpha*0.5)\n",
"e2 = math.exp(alpha*0.5) # -1 is ignored due to the large magnitude\n",
"ghama = (2*10**5-e1)/(e2*2*10**5)\n",
"print'%s %.1f %s' %(\"Ghama for set 2=\", ghama*100,\"*10^-2 colissions/cm \\n\")\n",
"\n",
"#Answers may vary due to round of error \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Slope = 26.346 \n",
"\n",
"Ghama for set 1= 0.182 *10^-5 /cm \n",
" \n",
"Alpha = 8.1 collosions/cm \n",
"\n",
"Ghama for set 2= 1.7 *10^-2 colissions/cm \n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 1.3 - PG NO.53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Chapter 1,Example 1.3 Page 53\n",
"\n",
"#employing equation Vb = K*d**n\n",
"#88 = K*4**n --- eq(1) 165 = K*8**n ---eq(2) \n",
"#dividing eq(2)/q(1)\n",
"Vb1 = 88.\n",
"Vb2 = 165.\n",
"n1 = 0.6286/0.693\n",
"K1 = Vb1/4**n1\n",
"#135 = K*6**n --- eq(1) 212 = K*10**n ---eq(2) \n",
"#dividing eq(2)/q(1) \n",
"Vb1 = 135.\n",
"Vb2 = 212.\n",
"n2 = 0.4513/0.5128\n",
"K2 = Vb1/6.**n2\n",
"n = (n1+n2)/2.\n",
"K = (K1+K2)/2.\n",
"print'%s %.2f %s %.2f' % (\"n =\",n,\"K = \",K,)\n",
"\n",
"#Answer may vary due to round of error \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"n = 0.89 K = 26.46\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 1.4 - PG NO.53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Chapter 1,Example 1.4 Page 53\n",
"# Determine (pd)min Vbmin\n",
"import math\n",
"A = 12.\n",
"B = 365.\n",
"e = 2.718\n",
"ghama = 0.02\n",
"K = 51.\n",
"pd = (e/A)*math.log(1.+(1./ghama))\n",
"Vbmin = (B/A)*e*math.log(K)\n",
"print'%s %.2f %s %d %s' % (\"(pd)min = \",pd,\" Vbmin = \",Vbmin,\"Volts\")\n",
"\n",
"#Answers may vary due to round of error\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(pd)min = 0.89 Vbmin = 325 Volts\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|