1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
{
"metadata": {
"name": "",
"signature": "sha256:a87b776675d5bac90b6fac25c1a236bc0e485ed79b01767e8b8d1e2b69104021"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 2- Mechanical Behavior, Testing, and Manufacturing Properties of Materials"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 2.1 - PG NO. 63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 2.1,chapter 2, page 63\n",
"\n",
"# Given that\n",
"#True stress=100000*(True strain)**0.5\n",
"\n",
"# Sample Problem on page no. 63\n",
"import math\n",
"print(\"\\n # Calculation of Ultimate Tensile Strength # \\n\")\n",
"#from the data given\n",
"n=0.5\n",
"E=0.5\n",
"K=690.\n",
"Truestress=K*((E)**n)\n",
"#let An(area of neck)/Ao=t\n",
"#from math.log(Ao/An)=n\n",
"print'%s %d %s' %(\"true Ultimate Tensile Strength =\",round(Truestress),\"MPa \\n\")\n",
"t=math.exp(-n)\n",
"UTS=Truestress*math.exp(-n)#from the math.expression UTS= P/Ao where P(Maximum Load)=Truestress*An\n",
"print'%s %d %s' %(\"Ultimate Tensile Strength =\",round(UTS),\"MPa\")\n",
"#answer in the book is approximated to 42850 psi \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" # Calculation of Ultimate Tensile Strength # \n",
"\n",
"true Ultimate Tensile Strength = 488 MPa \n",
"\n",
"Ultimate Tensile Strength = 296 MPa\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 2.2 - PG NO. 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 2.1,chapter 2, page 72\n",
"\n",
"print(\"## Calculation of Modulus of Resilience from Hardness ##\\n\")\n",
"#given data\n",
"Hardness=300.\n",
"Y=100.#\n",
"E=210000.\n",
"a=100.*100.\n",
"b=2.*210000.\n",
"Modulus=a/b\n",
"print(\"The area under the stress-strain curve is :\\n\")\n",
"print'%s %.4f %s' %(\"Modulus of Resilience =\",Modulus*9.81,\"mm-kg/mm^3\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"## Calculation of Modulus of Resilience from Hardness ##\n",
"\n",
"The area under the stress-strain curve is :\n",
"\n",
"Modulus of Resilience = 0.2336 mm-kg/mm^3\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|