1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
{
"metadata": {
"name": "AKmaini"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Chapter 11: Satellites and Satellite Communications\n"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 1, Pg No: 567"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n# Variable Declaration\nh = 150; # height of satellite from earth in km\nG = 6.67*10**-11; # Gravitational constant\nM = 5.98*10**24; # mass of the earth in kg\nRe = 6370; # radius of earth in km\n\n# Calculations\nu = G*M\nV = math.sqrt(u/((Re + h)*10**3)) # orbital velocity\nV1 = V/1000; # orbital velocity in km/s\n\n# Result\nprint 'Orbital velocity = %3.3f'%V1,'km/s';",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Orbital velocity = 7.821 km/s\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 2, Pg No: 568"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Declaration\nAp_Pe_diff = 30000; # difference between apogee and perigee in Km\na = 16000; # semi major axis of orbit\n\n# Calculations\ne = Ap_Pe_diff/float(2*a); # Eccentricity\n\n# Result\nprint 'Eccentricity = %3.2f'%e;",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Eccentricity = 0.94\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 3, Pg No:568"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Decalaration\na1 = 18000; # semi major axis of the elliptical orbits of satellite 1\na2 = 24000; # semi major axis of the elliptical orbits of satellite 2\n\n# Calculations\n#T = 2*%pi*sqrt(a^3/u);\n#let K = T2/T1;\nK = (float(a2)/a1)**(3/float(2)); # Ratio of orbital periods\n\n# Result\nprint 'The orbital period of satellite-2 is %3.2f' %K,' times the orbital period of satellite-1';\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The orbital period of satellite-2 is 1.54 times the orbital period of satellite-1\n"
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 4, Pg No:569"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Declaration\n\nh = 35800; # height of satellite orbit from earth in km\nG = 6.67*10**-11; # Gravitational constant\nM = 5.98*10**24; # mass of the earth in kg\nRe = 6364; # radius of earth in km\ni = 2; # inclination angle\n\n# Calculations\nu = G*M\nr = Re+h\nVi = math.sqrt(u/r*10**3)* math.tan(i*math.pi/180); # magnitude of velocity impulse\nV = Vi/1000; # magnitude of velocity impulse in m/s\n\n#Result\nprint 'Magnitude of velocity impulse = %d' %V,' m/s';",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Magnitude of velocity impulse = 107 m/s\n"
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 5, Pg No: 571"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Declaration\nh = float(13622); # ht of circular orbit from earth's surface\nRe = 6378; # Radius of earth in km\n\n# Calculations\nR = Re+h; # Radius of circular orbit\npimax = 180 - (2*math.acos(Re/R))*(180/math.pi); # Maximum shadow angle\neclipmax_time = (pimax/360)*24; # maximum daily eclipse duration\n\n# Result\nprint ' Maximum shadow angle = %3.1f\u00b0' %pimax\nprint ' Maximum daily eclipse duration = %3.2f'%eclipmax_time,' hours';",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " Maximum shadow angle = 37.2\u00b0\n Maximum daily eclipse duration = 2.48 hours\n"
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 6, Pg No:572"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n# Variable Declaration\n\nh = 35786; # ht of geo.stationary orbit above earth surface\nT = 365; # time in days\nr = 6378 # radius of earth in km\n\n# ie(t) = 23.4*sin(2*%pi*t/T)\n# for a circular orbit of 20000 km radius ,phi = 37.4\u00b0 ,Therefore, the time from first day of eclipse to equinox is given by substituting ie(t) = 37.4/2 = 18.7\u00b0\nphi = 37.4\nie = (phi/2)*(math.pi/180)\nk = 23.4*(math.pi/180)\nt = (365/(2*math.pi))*math.asin((ie/k)) \n# for geostationary orbit\nphimax = 180 - 2*(math.acos(r/(r+h)))*(180/math.pi)\nt_geo = (365/(2*math.pi))*math.asin((8.7*math.pi/180)/k)\n\n# Result\nprint 'Total time from first day of eclipse to last day of eclipse = %3.1f' %t,' days';\nprint 'Total time from first day of eclipse to last day of eclipse for geostationary orbit = %3.2f' %t_geo, 'days'",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Total time from first day of eclipse to last day of eclipse = 53.8 days\nTotal time from first day of eclipse to last day of eclipse for geostationary orbit = 22.13 days\n"
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7, Pg No:600"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Declaration\nm = 100; # mass of satellite\nV = 8000; # orbital velocity in m/s\nRe = 6370; # radius of earth in Km\nH = 200; # satellite height above earth surface\n\n# Calculations\nCF = (m*V**2)/((Re+H)*10**3); #centrifugal force\n\n# Result\nprint 'Centrifugal Force = %d' %CF,' Newtons';",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Centrifugal Force = 974 Newtons\n"
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 8, Pg No:601"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Declaration\n\nApogee = 30000; # Apogee pt of satellite elliptical orbit\nPerige = 1000; # perigee pt of satellite elliptical orbit\n\n# Calculations\na = (Apogee + Perige)/2; # semi major axis\n\n# Result\nprint 'Semi-major axis = %d' %a,' Km';",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Semi-major axis = 15500 Km\n"
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 9, Pg No:603"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math\n\n# Variable Declaration\nfarth = 30000; # farthest point in satellite elliptic eccentric orbit\nclosest = 200; # closest point in satellite elliptic eccentric orbit\nRe = float(6370); # Radius of earth in km\n\n# Calculations\nApogee = farth + Re; # Apogee in km\nPerigee = closest + Re; # perigee in km\na = (Apogee + Perigee)/(2); # semi-major axis\ne = (Apogee - Perigee)/(2*a); # orbit eccentricity\n\n# Result\nprint 'Apogee = %d' %Apogee,' km';\nprint 'Perigee = %d' %Perigee,' km';\nprint 'Orbit eccentricity = %3.3f' %e;",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Apogee = 36370 km\nPerigee = 6570 km\nOrbit eccentricity = 0.694\n"
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 10, Pg No:604"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Declaration\ne = 0.5; # orbit eccentricity\nae = 14000; # from fig. the distance from center of ellipse to the centre of earth\n\n# Calculations\na = ae/(e); # semi major axis\napogee = a*(1 + e); # Apogee in km\nperige = a*(1 - e); # perigee in km\n\n# Result\nprint 'Apogee = %d' %apogee,' km'\nprint 'Perigee = %d' %perige,' km'",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Apogee = 42000 km\nPerigee = 14000 km\n"
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 11, Pg No:604"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Declaration\nG = 6.67*10**-11; # Gravitational constant\nM = 5.98*10**24; # mass of the earth in kg\nRe = 6370*10**3; # radius of earth in m\n\n# Calculations\nu = G*M\nVesc = math.sqrt(2*u/Re);\nVes = Vesc/1000; # escape velocity in km/s\n\n# Result\nprint 'Escape velocity = %3.1f' %Ves,' km/s';",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Escape velocity = 11.2 km/s\n"
}
],
"prompt_number": 36
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 12, Pg No:605"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# variable Declartion\na = 25000*10**3; # semimajor axis in m from fig\nG = 6.67*10**-11; # Gravitational constant\nM = 5.98*10**24; # mass of the earth in kg\nh = 0\n\n# Calculations\nu = G*M;\nT = 2*math.pi*math.sqrt((a**3)/u)\nhr = T/3600 # conv. from sec to hrs and min\nt = T%3600 # conv. from sec to hrs and min\nmi = t/60 # conv. from sec to hrs and min\n\n# Result\nprint 'Orbital time period = %d' %hr,' Hours',' %d'%mi, 'minutes'",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Orbital time period = 10 Hours 55 minutes\n"
}
],
"prompt_number": 41
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 13, Pg No:605"
},
{
"cell_type": "code",
"collapsed": false,
"input": "import math;\n\n# Variable Declaration\napogee = float(35000); # farthest point in kms\nperigee = 500; # closest point in kms\nr = float(6360); # radius of earth in kms\nG = 6.67*10**-11 # gravitational constant\nM = 5.98*10**24; # mass of earth in kgs\n\n# calculations\n#funcprot(0)\napogee_dist = apogee + r # apogee distance in kms\nperigee_dist= perigee+r ; # perigee distance in kms\na = (apogee_dist + perigee_dist)/2; # semi-major axis of elliptical orbit\nT = (2*math.pi)*math.sqrt((a*10**3)**3/(G*M)); # orbital time period\nhr = T/3600 # conv. from sec to hrs and min\nt = (T%3600) # conv. from sec to hrs and min\nmi = t/60 # conv. from sec to hrs and min\nu = G*M\nVapogee = math.sqrt(u*((2/(apogee_dist*10**3)) - (1/(a*10**3))))/1000; # velocity at apogee point\nVperigee = math.sqrt((G*M)*((2/(perigee_dist*10**3)-(1/(a*10**3)))))/1000 # velocity at perigee point\n\n#Result\nprint 'Orbital Time Period = %d'%hr,' Hrs'' %d'%mi,' min'\nprint 'Velocity at apogee = %3.3f' %Vapogee,' Km/s'\nprint'Velocity at perigee = %3.3f' %Vperigee,' Km/s'\nprint'Note: Calculation mistake in textbook in finding velocity at apogee point'\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Orbital Time Period = 10 Hrs 20 min\nVelocity at apogee = 1.656 Km/s\nVelocity at perigee = 9.987 Km/s\nNote: Calculation mistake in textbook in finding velocity at apogee point\n"
}
],
"prompt_number": 57
}
],
"metadata": {}
}
]
}
|