1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
{
"metadata": {
"name": "",
"signature": "sha256:77734ce79918b96bed43d7baa269682912f0f51f73bf77fadd993778504d6908"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 4 - Characteristics of AC motor"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.1 - PG NO:72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 4.1, Page 72\n",
"import numpy\n",
"p1=numpy.poly1d([1, -3, 1])#Polynomial equation\n",
"print('Part a')\n",
"print('roots of the equation when slip at max torque')\n",
"x=numpy.roots(p1)\n",
"print(x)\n",
"\n",
"\n",
"p2=numpy.poly1d([1, -1.719,0.146])#polynomial equation in scilab function\n",
"y=numpy.roots(p2)\n",
"print('Part b')\n",
"print('roots of the equation when slip at max load')\n",
"print(y)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Part a\n",
"roots of the equation when slip at max torque\n",
"[ 2.61803399 0.38196601]\n",
"Part b\n",
"roots of the equation when slip at max load\n",
"[ 1.62939626 0.08960374]\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.3 - PG NO:76"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 4.3, Page 76\n",
"import numpy\n",
"p1=numpy.poly1d([0.04, -0.0266,.0016 ])#Polynomial equation\n",
"print('Part a')\n",
"print('roots of the equation that slip will run is')\n",
"x=numpy.roots(p1)\n",
"print(x)\n",
"#answers after calculation are accurate than textbook answers due to approximations"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Part a\n",
"roots of the equation that slip will run is\n",
"[ 0.59812426 0.06687574]\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.5 - PG NO:81"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 4.5, page 81\n",
"import math\n",
"pole=24.\n",
"Ns=245.#in rpm\n",
"N=(120.*50.)/pole#synchronous speed in rpm\n",
"f=(N-Ns)/N\n",
"p=110.#in kw\n",
"T=(p*1000.*60.)/(2.*math.pi*Ns)\n",
"v1=440./math.sqrt(3)#in v\n",
"ws=(2*math.pi*250)/60\n",
"s=0.02\n",
"R=0.03125#in ohm\n",
"x=math.sqrt(((3*R*v1**2)/(T*ws*s))-(R/s)**2)#by rearranging formula\n",
"print'%s %.5f %s' %('Stator resistance per phase is=',x,'ohm')\n",
"#calculating original resistance\n",
"\n",
"#Example 4.1, Page 72\n",
"import numpy\n",
"p1=numpy.poly1d([3190,-3235,72.78 ])#Polynomial equation\n",
"print('Part a')\n",
"print('The value of original resistance is')\n",
"x=numpy.roots(p1)\n",
"print(x)\n",
"\n",
"#Taking r=0.99108\n",
"r=(0.99108-R)/1.25**2\n",
"\n",
"print'%s %.4f %s' %('The value of resistance to be added is =',r,' ohm')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Stator resistance per phase is= 0.50358 ohm\n",
"Part a\n",
"The value of original resistance is\n",
"[ 0.99108634 0.02302024]\n",
"The value of resistance to be added is = 0.6143 ohm\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.6 - PG NO:92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 4.6, Page no 92\n",
"import math\n",
"print(\"Part ii\")\n",
"new_sin_delta=math.sin(math.pi/4)/.95\n",
"delta=math.asin(new_sin_delta)\n",
"x=math.degrees(delta)\n",
"print'%s %.2f %s' %('The value of delta is =',x,'degree')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Part ii\n",
"The value of delta is = 48.10 degree\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|