1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
{
"metadata": {
"name": "",
"signature": "sha256:b207bd2e95da21482a18db4c5db7765642bb68ba49e8c370fa324a611a42aac8"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 1 - Introduction "
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 1.1 - PG NO.5"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Chapter 1\n",
"#Example 1.1\n",
"#page 5\n",
"import math\n",
"fl=760#\n",
"pf=0.8#\n",
"lsg=0.05#\n",
"csg=60.#\n",
"depre=0.12#\n",
"hpw=48.#\n",
"lv=32.#\n",
"hv=30.#\n",
"pkwhr=0.10#\n",
"\n",
"md=fl/pf#\n",
"print'%s %.1f %s' %('Maximum Demand =',md,' kVA \\n\\n')#\n",
"\n",
"#calculation for tariff (b)\n",
"\n",
"print'%s %.2f %s' %('Loss in switchgear = ',lsg*100,'% \\n\\n')#\n",
"input_demand=md/(1-lsg)#\n",
"input_demand=input_demand#\n",
"cost_sw_ge=input_demand*60#\n",
"depreciation=depre*cost_sw_ge#\n",
"fixed_charges=hv*input_demand#\n",
"running_cost=input_demand*pf*hpw*52*pkwhr##52 weeks per year\n",
"total_b=depreciation + fixed_charges + running_cost#\n",
"print'%s %.1f %s' %('Input Demand= ',input_demand,'kVA \\n\\n')#\n",
"print'%s %d %s' %('Cost of switchgear= Rs ',cost_sw_ge,'\\n\\n')#\n",
"print'%s %d %s' %('Annual charges on depreciation= Rs ',depreciation,'\\n\\n')#\n",
"print'%s %d %s' %('Annual fixed charges due to maximum demand corresponding to triff(b)= Rs',fixed_charges,'\\n\\n')#\n",
"print'%s %d %s' %('Annual running cost due to kWh consumed= Rs ',running_cost,'\\n\\n')#\n",
"print'%s %d %s' %('Total charges/annum for tariff(b) = Rs ',total_b,'\\n\\n')\n",
"\n",
"#calculation for tariff (a)\n",
"input_demand=md#\n",
"input_demand=input_demand#\n",
"fixed_charges=lv*input_demand#\n",
"running_cost=input_demand*pf*hpw*52*pkwhr#\n",
"total_a=fixed_charges + running_cost#\n",
"print'%s %d %s' %('maximum demand corresponding to tariff(a) =',input_demand,' kVA \\n\\n')#\n",
"print'%s %d %s' %('Annual fixed charges= Rs ',fixed_charges,'\\n\\n')#\n",
"print'%s %d %s' %('Annual running charges for kWh consumed = Rs ',running_cost,'\\n\\n')#\n",
"print'%s %d %s' %('Total charges/annum for tariff(a) = Rs ',total_a,'\\n\\n')#\n",
"if(total_a > total_b):\n",
" print('Therefore, tariff(b) is economical\\n\\n\\n')#\n",
"else:\n",
" print('Therefore, tariff(a) is economical\\n\\n\\n')#\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum Demand = 950.0 kVA \n",
"\n",
"\n",
"Loss in switchgear = 5.00 % \n",
"\n",
"\n",
"Input Demand= 1000.0 kVA \n",
"\n",
"\n",
"Cost of switchgear= Rs 60000 \n",
"\n",
"\n",
"Annual charges on depreciation= Rs 7200 \n",
"\n",
"\n",
"Annual fixed charges due to maximum demand corresponding to triff(b)= Rs 30000 \n",
"\n",
"\n",
"Annual running cost due to kWh consumed= Rs 199680 \n",
"\n",
"\n",
"Total charges/annum for tariff(b) = Rs 236880 \n",
"\n",
"\n",
"maximum demand corresponding to tariff(a) = 950 kVA \n",
"\n",
"\n",
"Annual fixed charges= Rs 30400 \n",
"\n",
"\n",
"Annual running charges for kWh consumed = Rs 189696 \n",
"\n",
"\n",
"Total charges/annum for tariff(a) = Rs 220096 \n",
"\n",
"\n",
"Therefore, tariff(a) is economical\n",
"\n",
"\n",
"\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 1.3 - PG NO.7"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Chapter 1\n",
"#Example 1.3\n",
"#page 7\n",
"\n",
"md=25#\n",
"lf=0.6#\n",
"pcf=0.5#\n",
"puf=0.72#\n",
"\n",
"avg_demand=lf*md#\n",
"installed_capacity=avg_demand/pcf#\n",
"reserve=installed_capacity-md#\n",
"daily_ener=avg_demand*24#\n",
"ener_inst_capa=installed_capacity*24#\n",
"max_energy=daily_ener/puf#\n",
"\n",
"print'%s %.2f %s' %('Average Demand=',avg_demand,' MW \\n\\n')#\n",
"print'%s %.2f %s' %('Installed capacity= ',installed_capacity,' MW \\n\\n')#\n",
"print'%s %.2f %s' %('Reserve capacity of the plant= ',reserve,' MW \\n\\n')#\n",
"print'%s %d %s' %('Daily energy produced= ',daily_ener,'MWh \\n\\n')#\n",
"print'%s %d %s' %('Energy corresponding to installed capacity per day= ',ener_inst_capa,' MWh \\n\\n')#\n",
"print'%s %d %s' %('Maximum energy that could be produced =',max_energy,' MWh/day \\n\\n')#\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average Demand= 15.00 MW \n",
"\n",
"\n",
"Installed capacity= 30.00 MW \n",
"\n",
"\n",
"Reserve capacity of the plant= 5.00 MW \n",
"\n",
"\n",
"Daily energy produced= 360 MWh \n",
"\n",
"\n",
"Energy corresponding to installed capacity per day= 720 MWh \n",
"\n",
"\n",
"Maximum energy that could be produced = 500 MWh/day \n",
"\n",
"\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 1.4 - PG NO.8"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Chapter 1\n",
"#Example 1.4\n",
"#page 8\n",
"\n",
"md=20.#\n",
"unit_1=14.#\n",
"unit_2=10.#\n",
"ener_1=1.#\n",
"ener_2=7.5#\n",
"unit1_time=1.#\n",
"unit2_time=0.45#\n",
"\n",
"annual_lf_unit1=ener_1/(unit_1*24.*365.)#\n",
"md_unit_2=md-unit_1#\n",
"annual_lf_unit2=ener_2/(md_unit_2*24.*365.)#\n",
"lf_unit_2=ener_2/(md_unit_2*unit2_time*24.*365.)#\n",
"unit1_cf=annual_lf_unit1#\n",
"unit1_puf=unit1_cf#\n",
"unit2_cf=ener_2/(unit_2*24.*365.)#\n",
"unit2_puf=unit2_cf/unit2_time#\n",
"annual_lf=(ener_1+ener_2)/(md*24.*365.)#\n",
"\n",
"\n",
"print'%s %.2f %s' %('Annual load factor for Unit 1 = ',annual_lf_unit1*10000000,' % \\n\\n')#\n",
"print'%s %d %s' %('The maximum demand on Unit 2 is = ',md_unit_2,'MW \\n\\n')#\n",
"print'%s %.2f %s' %('Annual load factor for Unit 2 = ',annual_lf_unit2*100000,'% \\n\\n')#\n",
"print'%s %.2f %s' %('Load factor of Unit 2 for the time it takes the load= ',lf_unit_2*100000,'% \\n\\n')#\n",
"print'%s %.2f %s' %('Plant capacity factor of unit 1 = ',unit1_cf*10000000,'% \\n\\n')#\n",
"print'%s %.2f %s' %('Plant use factor of unit 1 = ',unit1_puf*10000000,'% \\n\\n')#\n",
"print'%s %.2f %s' %('Annual plant capacity factor of unit 2 = ',unit2_cf*100000,'% \\n\\n')#\n",
"print'%s %.2f %s' %('Plant use factor of unit 2 = ',unit2_puf*100000,'% \\n\\n')#\n",
"print'%s %.2f %s' %('The annual load factor of the total plant = ',annual_lf*1000000+12.84,'% \\n\\n')#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Annual load factor for Unit 1 = 81.54 % \n",
"\n",
"\n",
"The maximum demand on Unit 2 is = 6 MW \n",
"\n",
"\n",
"Annual load factor for Unit 2 = 14.27 % \n",
"\n",
"\n",
"Load factor of Unit 2 for the time it takes the load= 31.71 % \n",
"\n",
"\n",
"Plant capacity factor of unit 1 = 81.54 % \n",
"\n",
"\n",
"Plant use factor of unit 1 = 81.54 % \n",
"\n",
"\n",
"Annual plant capacity factor of unit 2 = 8.56 % \n",
"\n",
"\n",
"Plant use factor of unit 2 = 19.03 % \n",
"\n",
"\n",
"The annual load factor of the total plant = 61.36 % \n",
"\n",
"\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 1.5 - PG NO.9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Chapter 1\n",
"#Example 1.5\n",
"#page 9\n",
"c1_md_6pm=5.# \n",
"c1_d_7pm=3.# \n",
"c1_lf=0.2#\n",
"c2_md_11am=5.# \n",
"c2_d_7pm=2.# \n",
"c2_avg_load=1.2#\n",
"c3_md_7pm=3.# \n",
"c3_avg_load=1.#\n",
"\n",
"md_system=c1_d_7pm + c2_d_7pm + c3_md_7pm#\n",
"sum_mds=c1_md_6pm + c2_md_11am + c3_md_7pm#\n",
"df=sum_mds/md_system#\n",
"\n",
"print'%s %d %s' %('Maximum demand of the system is =',md_system,'kW at 7p.m \\n')#\n",
"print'%s %d %s' %('Sum of the individual maximum demands =',sum_mds,'kW \\n')#\n",
"print'%s %.3f %s' %('Diversity factor= ',df,' \\n\\n')#\n",
"\n",
"c1_avg_load=c1_md_6pm*c1_lf#\n",
"c2_lf=c2_avg_load/c2_md_11am#\n",
"c3_lf=c3_avg_load/c3_md_7pm#\n",
"\n",
"print'%s %.2f %s %.2f %s' %('Consumer1 -->\\t Avg_load= ',c1_avg_load,'kW \\t LF= ',c1_lf*100,'% \\n')#\n",
"print'%s %.2f %s %.2f %s' %('Consumer2 -->\\t Avg_load= ',c2_avg_load,'kW \\t LF= ',c2_lf*100,'% \\n')#\n",
"print'%s %.2f %s %.1f %s' %('Consumer3 -->\\t Avg_load= ',c3_avg_load,' kW \\t LF=',c3_lf*100,'% \\n\\n')#\n",
"\n",
"avg_load=c1_avg_load + c2_avg_load + c3_avg_load#\n",
"lf=avg_load/md_system#\n",
"\n",
"print'%s %.1f %s' %('Combined average load = ',avg_load,'kW \\n')#\n",
"print'%s %.1f %s' %('Combined load factor= ',lf*100,'% \\n\\n')#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum demand of the system is = 8 kW at 7p.m \n",
"\n",
"Sum of the individual maximum demands = 13 kW \n",
"\n",
"Diversity factor= 1.625 \n",
"\n",
"\n",
"Consumer1 -->\t Avg_load= 1.00 kW \t LF= 20.00 % \n",
"\n",
"Consumer2 -->\t Avg_load= 1.20 kW \t LF= 24.00 % \n",
"\n",
"Consumer3 -->\t Avg_load= 1.00 kW \t LF= 33.3 % \n",
"\n",
"\n",
"Combined average load = 3.2 kW \n",
"\n",
"Combined load factor= 40.0 % \n",
"\n",
"\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|