1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2 Nuclear Sturcture and Radioactivity"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2_1 pgno:25"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Half life of radioactive nuclide=t1/2=minutes 14.7674928978\n",
"\n",
"Time required for the activity to decrease to 25percent of the initial activity=t1=minutes 68.0335182976\n",
"\n",
"Time required for the activity to decrease to 10percent of the initial activity=t2=minutes 113.001227913\n"
]
}
],
"source": [
"from math import log\n",
"N0=3396.;#no. of counts per minute given by radioactive nuclide at a given time#\n",
"N=1000.;#no. of counts per minute given by radioactive nuclide one hour later#\n",
"thalf=0.693*60/(2.303*log(N0/N));#half life of nuclide in minutes#\n",
"print'Half life of radioactive nuclide=t1/2=minutes',thalf\n",
"t1=2.303*log(100/25)*thalf/0.693;#time required for the activity to decrease to 25% of the initial activity in minutes#\n",
"print'\\nTime required for the activity to decrease to 25percent of the initial activity=t1=minutes',t1\n",
"t2=2.303*log(100/10)*thalf/0.693;#time required for the activity to decrease to 10% of the initial activity in minutes#\n",
"print'\\nTime required for the activity to decrease to 10percent of the initial activity=t2=minutes',t2\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2_2 pgno:27"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Half life of 226Ra molecule=t1/2=years 1584.62090409\n"
]
}
],
"source": [
"R=3.7*10**10;#no. of alpha particles per second emitted by 1g of 226Ra#\n",
"N=(6.023*10**23)/226;#no. of atoms of 226Ra#\n",
"yr=3.15*10**7;#no of seconds in a year#\n",
"thalf=0.693*N/(R*yr);#half life of 226Ra in years#\n",
"print'Half life of 226Ra molecule=t1/2=years',thalf#here the answer written in textbook is wrongly printed actual answer will be the one we are getting here#\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2_3 pgno:29"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Weight of 1 Ci of 24Na=w=micrograms=1.13*10**-7grams 0.113352495089\n"
]
}
],
"source": [
"thalf=14.8*60*60;#half life of 24Na atom in seconds#\n",
"L=6.023*10**23;#Avagadro number#\n",
"v=3.7*10**10;#1 Ci of radioactivity in disintegrations per second#\n",
"w=(24*10**6*v*thalf)/(0.693*L);#weight of 1 Ci of 24Na in grams#\n",
"print'Weight of 1 Ci of 24Na=w=micrograms=1.13*10**-7grams',w\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2_4 pgno:30"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dM value of H atom=dM=amu 0.00239\n",
"\n",
"Binding energy of H atom=BE=MeV 2.22509\n"
]
}
],
"source": [
"Mp=1.00728;#mass of proton in amu#\n",
"Mn=1.00866;#mass of neutronin amu#\n",
"MH=2.01355;#isotopic mass of H atom in amu#\n",
"dM=((1*Mp)+(1*Mn)-MH);#dM value of H atom in amu#\n",
"print'dM value of H atom=dM=amu',dM\n",
"BE=dM*931;#binding energy of H atom in MeV#\n",
"print'\\nBinding energy of H atom=BE=MeV',BE\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2_5 pgno:32"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Age of the specimen=t=%fyears 36120.0499843\n"
]
}
],
"source": [
"from math import log\n",
"N0=15.3;#decay rate of Contemporary Carbon in disintegrations/min/gram#\n",
"N=2.25;#decay rate of 14C specimen in disintegrtions/min/gram#\n",
"thalf=5670.;#half life of nuclide in years#\n",
"t=2.303*log(N0/N)*thalf/0.693;#Age of the specimen in years#\n",
"print'Age of the specimen=t=years',t#here the answer given in textbook is actually wrong we get twice that of the answer which is shown through execution#\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2_6 pgno:33"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here N0 and N must be in terms of Uranium.N is proportional to 1gram og Uranium\n",
"\n",
"N0 can be calculated from the given data.0.0453grams of 206Pb corresponds to 238*0.0453/206=0.0523grams of 238U,i.e 0.0453 grams of 206Pb must have been formed by the decaying of 0.523grams of 238U.\n",
"Since N is proportional to 1,N0 is proportional to 1.0523.\n",
"\n",
"Age of the mineral=t=years=7.62*10**8years 762356478.526\n"
]
}
],
"source": [
"from math import log\n",
"thalf=4.5*10**9;#half life of Uranium in years#\n",
"print'Here N0 and N must be in terms of Uranium.N is proportional to 1gram og Uranium'\n",
"print'\\nN0 can be calculated from the given data.0.0453grams of 206Pb corresponds to 238*0.0453/206=0.0523grams of 238U,i.e 0.0453 grams of 206Pb must have been formed by the decaying of 0.523grams of 238U.\\nSince N is proportional to 1,N0 is proportional to 1.0523.'\n",
"N0=1.0523;\n",
"N=1;\n",
"t=2.303*log(N0/N)*thalf/0.693;#Age of the mineral in years#\n",
"print'\\nAge of the mineral=t=years=7.62*10**8years',t#here also the answer given in textbook is wrong the one resulted through execution is the right one#\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|