summaryrefslogtreecommitdiff
path: root/sample_notebooks/maheshvattikuti/chapter1.ipynb
blob: 9eda293b134cc02e09402dac329bcec087dc20d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "# chapter1: De Broglie Matter Waves"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##example 1.1;page no:10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.1,page no:10\n",
      "\n",
      " de Broglie wavelength of earth in metres is= 3.68e-63\n"
     ]
    }
   ],
   "source": [
    "# cal of de brogle wavelength of earth\n",
    "#intiation of all variables \n",
    "#given that\n",
    "M = 6.*10**24 # Mass of earth in Kg\n",
    "v = 3.*10**4 # Orbital velocity of earth in m/s\n",
    "h = 6.625*10**-34 # Plank constant\n",
    "print(\"Example 1.1,page no:10\")\n",
    "lamda=h/(M*v) \n",
    "print(\"\\n de Broglie wavelength of earth in metres is=\"),round(lamda,65)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.2;page no:10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.2,page no:11\n",
      "\n",
      " de Broglie wavelength of body in metres is= 6.625e-35\n"
     ]
    }
   ],
   "source": [
    "#cal of de Broglie wavelength of body\n",
    "#intiation of all variables\n",
    "#given that\n",
    "M = 1 # Mass of object in Kg\n",
    "v = 10 # velocity of object in m/s\n",
    "h = 6.625*10**-34 # Plank constant\n",
    "print(\"Example 1.2,page no:11\");\n",
    "lamda=h/(M*v)#calculation of de Broglie wavelength\n",
    "print(\"\\n de Broglie wavelength of body in metres is=\"),round(lamda,38)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##example 1.3;page no:11"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.3,page no:11\n",
      "\n",
      " de Broglie wavelength of body in metres is= 6.625e-09\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of body\n",
    "#intiation of all variables \n",
    "# Given that\n",
    "m = 1e-30 # Mass of any object in Kg\n",
    "v = 1e5 # velocity of object in m/s\n",
    "h = 6.625e-34 # Plank constant\n",
    "print(\"Example 1.3,page no:11\")\n",
    "lamda=h/(m*v) # calculation of de Broglie wavelength in metres\n",
    "print(\"\\n de Broglie wavelength of body in metres is=\"),round(lamda,12)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##example 1.4;page no:15"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.4,page no:15\n",
      "velocity of electron in m/s: 1000.0\n",
      "momentum of electron in Kgm/s: 9.1e-28\n",
      "de Broglie wavelength of electron is: 7.27e-07\n",
      "Note:The value given in the book for lamda is wrong hence corrected above\n"
     ]
    }
   ],
   "source": [
    "#cal of velocity,momenteum and wave lenght of electron\n",
    "#intiation of all variables  \n",
    "# Given that\n",
    "import math\n",
    "KE = 4.55e-25 # Kinetic energy of an electron in Joule\n",
    "m = 9.1e-31 # Mass of any object in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.4,page no:15\")\n",
    "v = math.sqrt(2*KE/m) # Calculation of velocity of moving electron\n",
    "p = m*v #Calculation of momentum of moving electron\n",
    "lamda= h/p # calculation of de Broglie wavelength\n",
    "print(\"velocity of electron in m/s:\"),round(v)\n",
    "print(\"momentum of electron in Kgm/s:\"),round(p,29)\n",
    "print(\"de Broglie wavelength of electron is:\"),round(lamda,9)\n",
    "print(\"Note:The value given in the book for lamda is wrong hence corrected above\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.5;page no:16"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.5,page no:16\n",
      "de Broglie wavelength of proton is: 2.645e-14\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of proton\n",
    "#intiation of all variables \n",
    "#Given that\n",
    "c = 3e8 # speed of light in m/s\n",
    "v = c/20 # Speed of proton in m/s\n",
    "m = 1.67e-27 # Mass of proton in Kg\n",
    "h = 6.625e-34 # Plank constant\n",
    "print(\"Example 1.5,page no:16\")\n",
    "lamda= h/(m*v) # calculation of de Broglie wavelength\n",
    "print(\"de Broglie wavelength of proton is:\"),round(lamda,17)\n",
    "# Answer in book is 6.645e-14m which is a calculation mistake\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.6;page no:16"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.6,page no:16\n",
      "\n",
      " de Broglie wavelength of neutron in angstrom= 7.99e-05\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of neutron\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "e = 12.8 # Energy of neutron in MeV\n",
    "c = 3.e8 # speed of light in m/s\n",
    "m = 1.675e-27 # Mass of neutron in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.6,page no:16\")\n",
    "rest_e = m*c**2/(1e6*1.6e-19)# rest mass energy of neutron in MeV\n",
    "if e/rest_e < 0.015:\n",
    "\tE = e\n",
    "else:\n",
    "\tE = rest_e +e\n",
    "lamda = h/(math.sqrt(2*m*e*1e6*1.6e-19)) # calculation of de Broglie wavelength\n",
    "print(\"\\n de Broglie wavelength of neutron in angstrom=\"),round(lamda*1e10,7)\n",
    "# Answer in book is 8.04e-5 angstrom which is misprinted\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.7;page no:17"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.7,page no:17\n",
      "\n",
      " de Broglie wavelength of neutron in angstrom= 1.734\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of neutron\n",
    "#intiation of all variables \n",
    "#Given that\n",
    "import math\n",
    "e = 1.602e-19 # charge on electron in coulomb\n",
    "V = 50. # Applied voltage in volts\n",
    "m = 9.1e-31 # Mass of electron in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.7,page no:17\")\n",
    "lamda= h/(math.sqrt(2*e*V*m)) # calculation of de Broglie wavelength\n",
    "print(\"\\n de Broglie wavelength of neutron in angstrom=\"),round(lamda*1e10,3)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.9;page no:18"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.9,page no:18\n",
      "de Broglie wavelength associated with the electron in angstrom= 1.67\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength associated with the electron\n",
    "#intiation of all variables \n",
    "#Given that\n",
    "import math\n",
    "e = 1.6e-19 # charge on electron in coulomb\n",
    "V = 54 # Applied voltage in volts\n",
    "m = 9.1e-31 # Mass of electron in Kg\n",
    "h = 6.63e-34 # Plank constant\n",
    "print(\"Example 1.9,page no:18\")\n",
    "lamda = h/(math.sqrt(2*e*V*m)) # calculation of de Broglie wavelength\n",
    "print(\"de Broglie wavelength associated with the electron in angstrom=\"),round(lamda*1e10,2)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.10;page no:19"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.10,page no:19\n",
      "velocity of electron in m/s: 59299945.33\n",
      "momentum of electron in Kgm/s: 5.3963e-23\n",
      "de Broglie wavelength of electron in angstrom= 0.123\n"
     ]
    }
   ],
   "source": [
    "#cal of velocity of electron,momentum of electron,de Broglie wavelength of electron\n",
    "#intiation of all variables \n",
    "#Given that\n",
    "import math\n",
    "E = 10. # Energy of electron in KeV\n",
    "me = 9.1e-31 # Mass of electron in Kg\n",
    "h = 6.63e-34 # Plank constant\n",
    "print(\"Example 1.10,page no:19\")\n",
    "v = math.sqrt(2*E*1.6e-16/me) # Calculation of velocity of moving electron\n",
    "p = me*v #Calculation of momentum of moving electron\n",
    "lamda = h/p # calculation of de Broglie wavelength\n",
    "print(\"velocity of electron in m/s:\"),round(v,2)\n",
    "print(\"momentum of electron in Kgm/s:\"),round(p,27)\n",
    "print(\"de Broglie wavelength of electron in angstrom=\"),round(lamda*1e10,3)\n",
    "# Answers in book are v = 5.93e6 m/s, p = 5.397e-24 kgm/s, lambda = 1.23 angstrom\n",
    "# Which is due to wrong calculation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.11;page no:20"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.11,page no:20\n",
      " velocity of neutron in m/s: 3964.072\n",
      " Kinetic energy of neutron in eV= 0.082\n"
     ]
    }
   ],
   "source": [
    "#cal of velocity and kinetic energy of neutron\n",
    "#intiation of all variables \n",
    "#Given that\n",
    "lamda= 1 # de Broglie wavelength of neutron in angstrom\n",
    "m = 1.67e-27 # Mass of electron in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.11,page no:20\")\n",
    "v = h/(m*lamda*1e-10) # Calculation of velocity of moving neutron\n",
    "print(\" velocity of neutron in m/s:\"),round(v,3)\n",
    "E = 1./2.*m*v**2 # Calculation of kinetic energy of moving neutron\n",
    "print(\" Kinetic energy of neutron in eV=\"),round(E/1.6e-19,3)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.12;page no:20"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.12,page no:20\n",
      "Wavelength of electron in  metres= 2.74e-11\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of electron\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "E = 2 # Energy of accelerated electron in KeV\n",
    "m = 9.1e-31 # Mass of electron in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.12,page no:20\")\n",
    "lamda = h/math.sqrt(2*m*E*1e3*1.6e-19) # Calculation of velocity of moving electron\n",
    "print(\"Wavelength of electron in  metres=\"),round(lamda,13)\n",
    "# Answer in book is 2.74e-12m\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.13;page no:21"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.13,page no:21\n",
      "Wavelength of matter wave in  angstrom= 1.48e-05\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of matter wave\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "v = 2e8 # speed of moving proton in m/s\n",
    "c = 3e8 # speed of light in m/s\n",
    "m = 1.67e-27 # Mass of proton in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.13,page no:21\")\n",
    "lamda = h/(m*v/math.sqrt(1-(v/c)**2)) # Calculation of velocity of moving electron\n",
    "print(\"Wavelength of matter wave in  angstrom=\"),round(lamda*1e10,7)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.14;page no:22"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.14,page no:22\n",
      "Momentum of photon in  Kgm/s while Momentum of electron in Kgm/s which are equal: 6.63e-24 6.63e-24\n",
      "Total Energy of photon in  joule while Total Energy of electron in  MeV: 1.989e-15 2.42e-17\n",
      "Ratio of kinetic energies in: 0.0121\n"
     ]
    }
   ],
   "source": [
    "#cal of momentum,total energy and ratio of kinetic energy of photon\n",
    "#intiation of all variables \n",
    "#given that\n",
    "lamda = 1# wavelength in m/s\n",
    "m_e = 9.1e-31 # Mass of electron in Kg\n",
    "m_p = 1.67e-27 # Mass of proton in kg\n",
    "c = 3e8 # speed of light in m/s\n",
    "h = 6.63e-34 # Plank constant\n",
    "print(\"Example 1.14,page no:22\")\n",
    "p_e = h/(lamda*1e-10) # Momentum of electron\n",
    "p_p = h/(lamda*1e-10) # Momentum of photon\n",
    "print(\"Momentum of photon in  Kgm/s while Momentum of electron in Kgm/s which are equal:\"),round(p_p,26),round(p_e,26)\n",
    "E_e = p_e**2/(2*m_e) +m_e*c**2 # Total energy of electron\n",
    "E_e1=(2.42*10**-17)+(m_e*c**2/1.6*10**-19)\n",
    "E_p = h*c/(lamda*1e-10) # Total energy of photon\n",
    "print(\"Total Energy of photon in  joule while Total Energy of electron in  MeV:\"),round(E_p,18),E_e1\n",
    "K_e = p_e**2/(2*m_e) # Kinetic energy of electron \n",
    "K_p = h*c/(lamda*1e-10)# Kinetic energy of photon\n",
    "r_K = K_e/K_p # Ratio of kinetic energies\n",
    "print(\"Ratio of kinetic energies in:\"),round(r_K,4)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.15;page no:24"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.15,page no:24\n",
      "de Broglie wavelength of neutron in angstrom: 0.0573\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of neutron\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "e = 25 # Energy of neutron in eV\n",
    "c = 3e8 # speed of light in m/s\n",
    "m = 1.67e-27 # Mass of neutron in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.15,page no:24\")\n",
    "rest_e = m*c**2/(1e6*1.6e-19)# rest mass energy of neutron in MeV\n",
    "if e/rest_e < 0.015:\n",
    "    E = e;\n",
    "else:\n",
    "\tE = rest_e +e;\n",
    "lamda = h/(math.sqrt(2*m*e*1.6e-19)) # calculation of de Broglie wavelength\n",
    "print(\"de Broglie wavelength of neutron in angstrom:\"),round(lamda*1e10,4)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.16;page no:24"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.16,page no:24\n",
      "de Broglie wavelength of neutron in angstrom: 0.00717\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of neutron \n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "e = 2*1.6e-19 # charge on alpha particle in coulomb\n",
    "V = 200 # Applied voltage in volts\n",
    "m = 4*1.67e-27 # Mass of alpha particle in Kg\n",
    "h = 6.63e-34 # Plank constant\n",
    "print(\"Example 1.16,page no:24\")\n",
    "lamda=h/(math.sqrt(2*e*V*m)) # calculation of de Broglie wavelength\n",
    "print(\"de Broglie wavelength of neutron in angstrom:\"),round(lamda*1e10,5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.17;page no:25"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.17,page no:25\n",
      "de Broglie wavelength of ball in angstrom: 6.62e-26\n",
      "de Broglie wavelength of electron in angstrom: 7.27\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of ball and electron\n",
    "#intiation of all variables \n",
    "#given that\n",
    "M = 20 # Mass of ball in Kg\n",
    "V = 5 # velocity of of ball in m/s\n",
    "m = 9.1e-31 #Mass of electron in Kg\n",
    "v = 1e6 # velocity of of electron in m/s\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.17,page no:25\")\n",
    "lambda_b = h/(M*V) # calculation of de Broglie wavelength for ball\n",
    "lambda_e = h/(m*v) # calculation of de Broglie wavelength electron\n",
    "print(\"de Broglie wavelength of ball in angstrom:\"),round(lambda_b*1e10,34)\n",
    "print(\"de Broglie wavelength of electron in angstrom:\"),round(lambda_e*1e10,2)\n",
    "# answer in book is 6.62e-22 angstrom for ball\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.18;page no:26"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.18,page no:26\n",
      "Wavelength of neutron in angstrom: 0.286\n"
     ]
    }
   ],
   "source": [
    "#cal of de brogle wavelength of neutron\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "E = 1 # Energy of neutron in eV\n",
    "m = 1.67e-27 # Mass of neutron in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "print(\"Example 1.18,page no:26\")\n",
    "lamda = h/math.sqrt(2*m*E*1.6e-19) # Calculation of velocity of moving electron\n",
    "print(\"Wavelength of neutron in angstrom:\"),round(lamda*1e10,3)\n",
    "# Answer in book is 6.62e-22 angstrom\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.19;page no:27"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.19,page no:27\n",
      "Applied voltage on electron in V: 602.0\n"
     ]
    }
   ],
   "source": [
    "#cal of Applied voltage on electron \n",
    "#intiation of all variables \n",
    "#given that\n",
    "lamda = 0.5# wavelength of electron in angstrom\n",
    "m = 9.1e-31 # Mass of electron in Kg\n",
    "h = 6.62e-34 # Plank constant\n",
    "q = 1.6e-19 # charge on electron in coulomb\n",
    "print(\"Example 1.19,page no:27\")\n",
    "V = h**2/(2*m*q*(lamda*1e-10)**2) # Calculation of velocity of moving electron\n",
    "print(\"Applied voltage on electron in V:\"),round(V,1)\n",
    "# Answer in book is 601.6 Volt\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.21;page no:29"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.21,page no:29\n",
      "Wavelength of neutron at degree Celsius in angstrom: 1.43\n"
     ]
    }
   ],
   "source": [
    "#cal of  wavelength of neutron\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "k = 8.6e-5 # Boltzmann constant\n",
    "t = 37 # Temperature in degree Celsius\n",
    "h = 6.62e-34 # Plank constant\n",
    "m = 1.67e-27 # Mass of neutron\n",
    "print(\"Example 1.21,page no:29\")\n",
    "lamda = h/math.sqrt(3*m*(k*1.6e-19)*(t+273))# Calculation of wavelength\n",
    "print(\"Wavelength of neutron at degree Celsius in angstrom:\"),round(lamda*1e10,2)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.22;page no:29"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.22,page no:29\n",
      "Wavelength of helium at degree Celsius in angstrom: 0.727\n"
     ]
    }
   ],
   "source": [
    "#cal of wavelength of helium\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "k = 8.6e-5 # Boltzmann constant\n",
    "t = 27 # Temperature in degree Celsius\n",
    "h = 6.62e-34 # Plank constant\n",
    "m = 6.7e-27 # Mass of helium atom\n",
    "print(\"Example 1.22,page no:29\")\n",
    "lamda = h/math.sqrt(3*m*(k*1.6e-19)*(t+273))# Calculation of wavelength\n",
    "print(\"Wavelength of helium at degree Celsius in angstrom:\"),round(lamda*1e10,3)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.23;page no:30"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.23,page no:30\n",
      "lamda= 8.67e-11\n",
      "D/2*x= 0.05\n",
      "tan(theta)= 0.05\n",
      "Interatomic spacing of crystal in angstrom: 8.67\n"
     ]
    }
   ],
   "source": [
    "#cal of Interatomic spacing of crystal\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "E = 200. # energy of electrons in eV\n",
    "x = 20. # distance of screen in cm\n",
    "D = 2. # diameter of ring in cm\n",
    "h = 6.62e-34 # Plank constant\n",
    "m = 9.1e-31 # Mass of electron in kg\n",
    "print(\"Example 1.23,page no:30\")\n",
    "lamda= h/math.sqrt(2*m*E*1.6e-19) # Calculation of wavelength\n",
    "print(\"lamda=\"),round(lamda,13)\n",
    "print(\"D/2*x=\"),D/(2*x)\n",
    "p=D/(2*x)\n",
    "print(\"tan(theta)=\"),p\n",
    "d = lamda/(2*p)# calculation of interatomic spacing of crystal\n",
    "print(\"Interatomic spacing of crystal in angstrom:\"),round(d*1e10,2)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.24;page no:31"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.24,page no:31\n",
      "Velocity of electron in ground state in M/s= 2.31\n"
     ]
    }
   ],
   "source": [
    "#cal of velocity of electron \n",
    "#intiation of all variables \n",
    "#given that\n",
    "r = 0.5 # Bohr radius of hydrogen in angstrom\n",
    "m = 9.1e-31 # Mass of neutron in Kg\n",
    "h = 6.6e-34 # Plank constant\n",
    "print(\"Example 1.24,page no:31\")\n",
    "v = h/(2*3.14*r*1e-10*m) # velocity of electron in ground state\n",
    "print(\"Velocity of electron in ground state in M/s=\"),round(v/10**6,2)\n",
    "# Answer in book is 2.31e6 m/s\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.25;page no:32"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.25,page no:32\n",
      "Velocity of electron in ground state in m/s: 1237.0\n"
     ]
    }
   ],
   "source": [
    "#cal of Velocity of electron in ground state\n",
    "#intiation of all variables \n",
    "#given that\n",
    "lamda = 5890 # wavelength of yellow radiation in angstrom\n",
    "m = 9.1e-31 # Mass of neutron in Kg\n",
    "h = 6.63e-34 # Plank constant\n",
    "print(\"Example 1.25,page no:32\")\n",
    "v = h/(lamda*1e-10*m) # velocity of electron in ground state\n",
    "print(\"Velocity of electron in ground state in m/s:\"),round(v,1)\n",
    "# Answer in book is 1.24e3 m/s\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.26;page no:33"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.26,page no:33\n",
      "Velocity of neutron in m/s: 1985.0\n",
      "Kinetic energy of neutron in eV: 0.021\n"
     ]
    }
   ],
   "source": [
    "#cal of Velocity and kinetic energy of neutron\n",
    "#intiation of all variables \n",
    "#given that\n",
    "lamda = 2 # wavelength of neutron in angstrom\n",
    "m = 1.67e-27 # Mass of neutron in Kg\n",
    "h = 6.63e-34 # Plank constant\n",
    "print(\"Example 1.26,page no:33\")\n",
    "v = h/(lamda*1e-10*m) # velocity of neutron\n",
    "k = 0.5*m*v**2 # Kinetic energy of neutron\n",
    "print(\"Velocity of neutron in m/s:\"),round(v,1)\n",
    "print(\"Kinetic energy of neutron in eV:\"),round(k/1.6e-19,3)\n",
    "# Answer in book is 0.021eV\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.29;page no:36"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.29,page no:36\n",
      "theta 72.6\n",
      "theta1= 56.84\n",
      "For first order, sin(theta) in For second order sin(theta) must be which is not possible for any value of angle.So no maxima occur for higher orders: 1.91\n"
     ]
    }
   ],
   "source": [
    "#cal of theta and theta1  \n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "v1 = 50 # Previous applied voltage\n",
    "v2 = 65 # final applied voltage\n",
    "k = 12.28 \n",
    "d = 0.91 # Spacing in a crystal in angstrom\n",
    "print(\"Example 1.29,page no:36\")\n",
    "lamda = k/math.sqrt(v1)\n",
    "theta= math.asin(lamda/(2*d))# Angel for initial applied voltage\n",
    "lamda1 = k/math.sqrt(v2)# wavelength for final applied voltage\n",
    "theta1 = math.asin(lamda1/(2*d))# Angel for final applied voltage\n",
    "#print(\"lamda1/1.82=\"),math.asin(lamda1/1.82)\n",
    "print(\"theta\"),round(theta*180/3.14,1)\n",
    "print(\"theta1=\"),round(theta1*180/3.14,2)\n",
    "print(\"For first order, sin(theta) in For second order sin(theta) must be which is not possible for any value of angle.So no maxima occur for higher orders:\"),round(2*math.sin(theta),2)\n",
    "#print(\"Angle of diffraction for first order of beam  is  degree at  Volts:\"),round((math.theta1*180/math.pi),2)\n",
    "# Answer in book is 57.14 degree"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.30;page no:45"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.30,page no:45\n",
      "Group velocity of seawater waves in m/s: 16.29\n"
     ]
    }
   ],
   "source": [
    "#cal of Group velocity of seawater waves\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "lamda = 680 # Wavelength in m\n",
    "g = 9.8 #Acceleration due to gravity\n",
    "print(\"Example 1.30,page no:45\")\n",
    "v_g = 0.5*math.sqrt(g*lamda/(2*3.14)) # Calculation of group velocity\n",
    "print(\"Group velocity of seawater waves in m/s:\"),round(v_g,2)\n",
    "# Answer in book is 16.29 m/s\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.32;page no:47"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.32,page no:47\n",
      "Group velocity of de Broglie waves is c  : 0.9966\n",
      " phase velocity of de Broglie waves is c 1.0034\n"
     ]
    }
   ],
   "source": [
    "#cal of group and phase velocity of de brogle waves \n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "lamda = 2e-13 # de Broglie wavelength of an electron in m\n",
    "c = 3e8 # Speed of light in m/s\n",
    "m = 9.1e-31 # Mass of electron in Kg\n",
    "h = 6.63e-34 # Plank constant\n",
    "print(\"Example 1.32,page no:47\")\n",
    "E = h*c/(lamda*1.6e-19) \n",
    "E_rest = m*c**2/(1.6e-19) # Calculation of rest mass energy\n",
    "E_total = math.sqrt(E**2+E_rest**2) # Total energy in eV\n",
    "v_g = c*math.sqrt(1-(E_rest/E_total)**2) # Group velocity\n",
    "v_p  = c**2/v_g # Phase velocity\n",
    "print(\"Group velocity of de Broglie waves is c  :\"),round(v_g/c,4)\n",
    "print(\" phase velocity of de Broglie waves is c\"),round(v_p/c,4)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## example 1.33;page no:48"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 1.33,page no:48\n",
      "Kinetic energy of electron in KeV: 293.33\n",
      "Group velocity of de Broglie waves is c in m/s: 0.7719\n",
      "phase velocity of de Broglie waves is c in m/s: 1.295\n"
     ]
    }
   ],
   "source": [
    "#cal of Kinetic energy of electron,group velocity and phase velocity of de Broglie waves\n",
    "#intiation of all variables \n",
    "#given that\n",
    "import math\n",
    "lamda = 2.e-12 # de Broglie wavelength of an electron in m\n",
    "c = 3.e8 # Speed of light in m/s\n",
    "m = 9.1e-31 # Mass of electron in Kg\n",
    "h = 6.63e-34 # Plank constant\n",
    "print(\"Example 1.33,page no:48\")\n",
    "E = h*c/(lamda*1.6e-19) # Energy due to momentum\n",
    "E_rest = m*c**2/(1.6e-19) # Calculation of rest mass energy\n",
    "E_total = math.sqrt(E**2+E_rest**2) # Total energy in eV\n",
    "KE = E_total - E_rest # Kinetic energy\n",
    "v_g = c*math.sqrt(1-(E_rest/E_total)**2) # Group velocity\n",
    "v_p  = c**2/v_g # Phase velocity\n",
    "print(\"Kinetic energy of electron in KeV:\"),round(KE/1000,2)\n",
    "print(\"Group velocity of de Broglie waves is c in m/s:\"),round(v_g/c,4)\n",
    "print(\"phase velocity of de Broglie waves is c in m/s:\"),round(v_p/c,3)\n",
    "# Answer in book is v_g = 0.6035c & v_p = 1.657c\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}