summaryrefslogtreecommitdiff
path: root/sample_notebooks/kowshikChilamkurthy/Chapter_1_Stress,Axial_load_and.ipynb
blob: ff9f91c7b49aaf19dddb25d9ef01729fbd2b4d7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.1 page number 24\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The bearing stress at C  is   0.875 MPA\n",
      "The maximum normal stress in BD bolt is:  62.0 MPA\n",
      "The tensile strss at shank of the bolt is:  40.0 MPA\n"
     ]
    }
   ],
   "source": [
    "#Given\n",
    "import math\n",
    "d_bolt = 20.0       #mm,diameter,This is not the minimum area\n",
    "d_bolt_min = 16.0   #mm This is at the roots of the thread \n",
    "#This yealds maximum stress \n",
    "A_crossection = (math.pi)*(d_bolt**2)/4         #mm*2\n",
    "A_crossection_min = (math.pi)*(d_bolt_min**2)/4 #mm*2 ,This is minimum area which yeilds maximum stress\n",
    "load = 10.0 #KN\n",
    "BC = 1.0    #m\n",
    "CF = 2.5    #m\n",
    "contact_area = 200*200  # mm*2 , The contact area at c\n",
    "\n",
    "#caliculations \n",
    "#Balancing forces in the x direction:\n",
    "# Balncing the moments about C and B:\n",
    "Fx = 0 \n",
    "R_cy = load*(BC+CF)   #KN , Reaction at C in y-direction\n",
    "R_by = load*(CF)      #KN , Reaction at B in y-direction\n",
    "#Because of 2 bolts\n",
    "stress_max = (R_by/(2*A_crossection_min))*(10**3)  # MPA,maximum stess records at minimum area\n",
    "stress_shank = (R_by/(2*A_crossection))*(10**3)    # MPA\n",
    "Bearing_stress_c = (R_cy/contact_area)*(10**3)     #MPA, Bearing stress at C\n",
    "\n",
    "print\"The bearing stress at C  is  \",(Bearing_stress_c) ,\"MPA\"\n",
    "print\"The maximum normal stress in BD bolt is: \",round(stress_max),\"MPA\"\n",
    "print\"The tensile strss at shank of the bolt is: \",round(stress_shank),\"MPA\"\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.2 page number 26"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The total weightof pier:  25.0 KN\n",
      "The stress at 1 m above is   28.75 MPA\n"
     ]
    }
   ],
   "source": [
    "#Given \n",
    "load_distributed = 20 #KN/m*2, This is the load distributed over the pier\n",
    "H = 2          # m, Total height \n",
    "h = 1          #m , point of investigation \n",
    "base = 1.5     #m The length of crossection in side veiw \n",
    "top = 0.5      #m ,The length where load is distributed on top\n",
    "base_inv = 1   #m , the length at the point of investigation \n",
    "area = 0.5*1   #m ,The length at a-a crossection \n",
    "density_conc = 25 #KN/m*2\n",
    "#caliculation of total weight \n",
    "\n",
    "v_total = ((top+base)/2)*top*H       #m*2 ,The total volume \n",
    "w_total = v_total* density_conc  #KN , The total weight\n",
    "R_top = (top**2)*load_distributed    #KN , THe reaction force due to load distribution \n",
    "reaction_net = w_total + R_top\n",
    "\n",
    "#caliculation of State of stress at 1m \n",
    "v_inv = ((top+base_inv)/2)*top*h    #m*2 ,The total volume from 1m to top\n",
    "w_inv = v_inv*density_conc          #KN , The total weight from 1m to top\n",
    "reaction_net = w_inv + R_top        #KN\n",
    "Stress = reaction_net/area           #KN/m*2\n",
    "print\"The total weight of pier is\",w_total,\"KN\"\n",
    "print\"The stress at 1 m above is\",Stress,\"MPA\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.3 page number 27"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tensile stress in main bar AB: 17.89 Ksi\n",
      "Tensile stress in clevis of main bar AB: 11.18 Ksi\n",
      "Comprensive stress in main bar BC: 12.93 Ksi\n",
      "Bearing stress in pin at C: 18.86 Ksi\n",
      "torsion stress in pin at C: -25.62 Ksi\n"
     ]
    }
   ],
   "source": [
    "#Given\n",
    "from math import pow\n",
    "d_pins = 0.375 #inch\n",
    "load = 3      #Kips\n",
    "AB_x = 6      #inch,X-component\n",
    "AB_y = 3      #inch,Y-component  \n",
    "BC_y = 6      #inch,Y-component\n",
    "BC_x = 6      #inch,X-component\n",
    "area_AB = 0.25*0.5                #inch*2 \n",
    "area_net = 0.20*2*(0.875-0.375) #inch*2 \n",
    "area_BC = 0.875*0.25              #inch*2 \n",
    "area_pin = d_pins*2*0.20           #inch*2 \n",
    "area_pin_crossection = 3.14*((d_pins/2)**2)\n",
    "#caliculations\n",
    "\n",
    "slope = AB_y/ AB_x   #For AB\n",
    "slope =  BC_y/ BC_x  #For BC\n",
    "\n",
    "#momentum at point C:\n",
    "F_A_x = (load*AB_x )/(BC_y + AB_y ) #Kips, F_A_x X-component of F_A\n",
    "\n",
    "#momentum at point A:\n",
    "F_C_x = -(load*BC_x)/(BC_y + AB_y ) #Kips, F_C_x X-component of F_c\n",
    "\n",
    "#X,Y components of F_A\n",
    "F_A= (pow(5,0.5)/2)*F_A_x  #Kips\n",
    "F_A_y = 0.5*F_A_x          #Kips\n",
    "\n",
    "#X,Y components of F_C  \n",
    "F_C= pow(2,0.5)*F_C_x    #Kips\n",
    "F_C_y = F_C_x            #Kips\n",
    "\n",
    "T_stress_AB = F_A/area_AB                 #Ksi , Tensile stress in main bar AB\n",
    "stress_clevis = F_A/area_net              #Ksi ,Tensile stress in clevis of main bar AB\n",
    "c_strees_BC = F_C/area_BC                 #Ksi , Comprensive stress in main bar BC\n",
    "B_stress_pin = F_C/area_pin               #Ksi , Bearing stress in pin at C\n",
    "To_stress_pin =  F_C/area_pin_crossection #Ksi , torsion stress in pin at C\n",
    "\n",
    "print\"Tensile stress in main bar AB:\",round(T_stress_AB,2),\"Ksi\"\n",
    "print\"Tensile stress in clevis of main bar AB:\",round(stress_clevis,2),\"Ksi\"\n",
    "print\"Comprensive stress in main bar BC:\",round(-c_strees_BC,2),\"Ksi\"\n",
    "print\"Bearing stress in pin at C:\",round(-B_stress_pin,2),\"Ksi\"\n",
    "print\"torsion stress in pin at C:\",round(To_stress_pin,2),\"Ksi\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.4 page number 38"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The factor 2.5 is less than assumed factor 2.7 so this can be considered\n"
     ]
    }
   ],
   "source": [
    "#Given\n",
    "strength_steel = 120 #Ksi\n",
    "factor = 2.5\n",
    "F_C =   2.23 #Ksi\n",
    "\n",
    "#caliculations\n",
    "\n",
    "stress_allow = strength_steel/factor #Ksi\n",
    "A_net = F_C/strength_steel           #in*2 , \n",
    "#lets adopt 0.20x0.25 in*2 and check wether we are correct or not? \n",
    "\n",
    "A_net_assumption = 0.25*0.20            #in*2 , this is assumed area which is near to A_net\n",
    "stress = 2.23/A_net_assumption          #Ksi\n",
    "factor_assumed = strength_steel/stress \n",
    "\n",
    "if factor_assumed > factor :\n",
    "    print \"The factor\",factor,\"is less than assumed factor\",round(factor_assumed,1),\"so this can be considered\"\n",
    "else:\n",
    "    print \"The assumed factor\",factor, \"is more than assumed factor\",factor_assumed,\"factor_assumed\"\n",
    " \n",
    "    \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.6 page number 35"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The required size of rod is: 49.35 m*2\n"
     ]
    }
   ],
   "source": [
    "#Given\n",
    "mass = 5       #Kg\n",
    "frequency = 10 #Hz\n",
    "stress_allow = 200 #MPa\n",
    "R = 0.5        #m\n",
    "\n",
    "#caliculations \n",
    "from math import pi\n",
    "w = 2*pi*frequency #rad/sec\n",
    "a = (w**2)*R       #m*2/sec\n",
    "F = mass*a         #N\n",
    "A_req = F/stress_allow  #m*2 , The required area for aloowing stress\n",
    "print\"The required size of rod is:\",round(A_req,2),\"m*2\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#  Example 1.7 page number 45"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "the allowable area for live load 1.0 is 0.273 in*2\n",
      "the allowable area for live load 15 is 0.909 in*2\n",
      "the crossection area for live load 1.0 is 0.235 in*2\n",
      "the crossection area for live load 15 is 0.926 in*2\n"
     ]
    }
   ],
   "source": [
    "#Given\n",
    "D_n = 5.0           #kips, dead load\n",
    "L_n_1 = 1.0         #kips ,live load 1\n",
    "L_n_2 = 15          #kips ,live load 2\n",
    "stress_allow = 22   #ksi\n",
    "phi = 0.9           #probalistic coefficients\n",
    "y_stress = 36       #ksi,Yeild strength\n",
    "#According to AISR \n",
    "\n",
    "#a\n",
    "p_1 = D_n + L_n_1 #kips since the total load is sum of dead load and live load\n",
    "p_2 = D_n + L_n_2 #kips, For second live load\n",
    "\n",
    "Area_1 = p_1/stress_allow  #in*2 ,the allowable area for the allowed stress\n",
    "Area_2 = p_2/stress_allow  #in*2\n",
    "print \"the allowable area for live load\",L_n_1,\"is\",round(Area_1,3),\"in*2\"\n",
    "print \"the allowable area for live load\",L_n_2,\"is\",round(Area_2,3),\"in*2\"\n",
    "\n",
    "#b\n",
    "#area_crossection= (1.2*D_n +1.6L_n)/(phi*y_stress)\n",
    "\n",
    "area_crossection_1= (1.2*D_n +1.6*L_n_1)/(phi*y_stress) #in*2,crossection area for first live load\n",
    "area_crossection_2= (1.2*D_n +1.6*L_n_2)/(phi*y_stress) #in*2,crossection area for second live load\n",
    "print \"the crossection area for live load\",L_n_1,\"is\",round(area_crossection_1,3),\"in*2\"\n",
    "print \"the crossection area for live load\",L_n_2,\"is\",round(area_crossection_2,3),\"in*2\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#   Example 1.8 page number 51"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Length of the Weld 1: 2.54 in\n",
      "Length of the Weld 2: 4.65 in\n"
     ]
    }
   ],
   "source": [
    "#Given\n",
    "A_angle = 2              #in*2 \n",
    "stress_allow = 20        #ksi, The maximum alowable stress\n",
    "F = stress_allow*A_angle #K, The maximum force\n",
    "AD = 3                   #in, from the figure\n",
    "DC = 1.06                #in, from the figure\n",
    "strength_AWS = 5.56 # kips/in,Allowable strength according to AWS\n",
    "\n",
    "#caliculations \n",
    "#momentum at point \"d\" is equal to 0\n",
    "R_1 = (F*DC)/AD      #k,Resultant force developed by the weld\n",
    "R_2 = (F*(AD-DC))/AD #k,Resultant force developed by the weld\n",
    "\n",
    "l_1 = R_1/strength_AWS #in,Length of the Weld 1\n",
    "l_2 = R_2/strength_AWS #in,Length of the Weld 2\n",
    "       \n",
    "print \"Length of the Weld 1:\",round(l_1,2),\"in\"\n",
    "print \"Length of the Weld 2:\",round(l_2,2),\"in\"      \n",
    "       \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}