summaryrefslogtreecommitdiff
path: root/sample_notebooks/keerthi vanigundla/keerthi vanigundla_version_backup/r.k.shukla.ipynb
blob: 19a84998e5d5e63d8bcbbdbd44a0f68cf07d26ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 4:Behaviour of Dielectric Materials in ac and dc Fields"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 4.1,Page No:4.8"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "dielectric constant of argon = 1.0005466\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "alpha      = 1.8*10**-40;           #polarisability of argon in Fm**2\n",
    "e0         = 8.85*10**-12;          #dielectric constant F/m\n",
    "N1         = 6.02*10**23;           #avagadro number in mol**-1\n",
    "x          = 22.4*10**3;            #volume in m^3\n",
    " \n",
    "#formula\n",
    "#er-1=N*p/e0*E=(N/e0)*alpha\n",
    "#calculation\n",
    "N          = N1/float(x);                            #number of argon atoms in per unit volume in cm**3\n",
    "N2         = N*10**6;                                 #number of argon atoms in per unit volume in m**3\n",
    "er         = 1+((N2/float(e0)))*(alpha);             #dielectric constant F/m\n",
    "\n",
    "\n",
    "#result\n",
    "print'dielectric constant of argon = %3.7f'%er;"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 4.2,Page No:4.9"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "displacement = 1.25e-17 m\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#variable declaration\n",
    "alpha       = 1.8*10**-40;       #polarisability of argon in F*m^2\n",
    "E           = 2*10**5;           # in V/m\n",
    "z           = 18;\n",
    "e           = 1.6*10**-19;\n",
    " \n",
    " \n",
    "#formula\n",
    "#p=18*e*x\n",
    "#calculation\n",
    "p       = alpha*E;\n",
    "x       = p/float(18*e);           #shift of electron in m\n",
    "\n",
    "  \n",
    "#result\n",
    "print'displacement = %3.2e'%x,'m';"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 4.3,Page No:4.9"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "local field of benzene=4.40e+03 V/m\n",
      "local field of water=-1.57e+06 V/m\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#variable declaration\n",
    "E0    = 300*10**2;                  #local field in V/m\n",
    "P1  = 3.398*10**-7;                 #dipole moment Coulomb/m\n",
    "P2  = 2.124*10**-5;                 #dipole moment Coulomb/m\n",
    "e0  = 8.85*10**-12;                 #permittivity in F/m\n",
    " \n",
    " \n",
    "#formula\n",
    "#E10Ci=E0-(2*Pi/3*e0)\n",
    "#calculation\n",
    "E10C1  = E0-((2*P1)/float(3*e0));       #local field of benzene in V/m\n",
    "E10C2  = E0-((2*P2)/float(3*e0));      #local field of water in V/m\n",
    " \n",
    "#result\n",
    "print'local field of benzene=%3.2e'%E10C1,'V/m';\n",
    "print'local field of water=%3.2e'%E10C2,'V/m';"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 4.4,Page No:4.9"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# import math\n",
    "\n",
    "#variable declaration\n",
    "p1 = 5.12*10**-34;          #p of benzene kg/m**3\n",
    "p2 = 6.34*10**-34;          #p of water kg/m**3\n",
    "e10C1  = 4.4*10**3;         #local field of benzene in V/m\n",
    "e10C2  = 1570*10**3;        #local field of water in V/m\n",
    " \n",
    " \n",
    "#formula\n",
    "#p=alphai*e10Ci\n",
    "#calculation\n",
    "alpha1 = p1/float(e10C1);       #polarisability of benzene in F*m**2\n",
    "alpha2 = p2/float(e10C2);       #polarisability of water in F*m**2\n",
    "  \n",
    "\n",
    "#result\n",
    "print'polarisability of benzene = %3.2e'%alpha1,'F*m**2';\n",
    "print'polarisability of water  = %3.2e'%alpha2,'F*m**2';\n",
    "print'Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37';"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 4.5,Page No:4.10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "polarisation of benzene = 6.80e-07 c/m**2\n",
      "polarisation of water = 4.25e-05. c/m**2\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#variable declaration\n",
    "e0     = 8.85*10**-12;          #abslute permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
    "E      = 600*10**2;             #strength in V/cm\n",
    "er1    = 2.28;                  #dielectric constant of benzene in coulomb/m\n",
    "er2    = 81;                    #dielectric constant of water in coulomb/m\n",
    "\n",
    "\n",
    "#fomula\n",
    "#p=e0*E*(er-1)\n",
    "#calculation\n",
    "pB     = e0*E*(er1-1);        #polarisation of benzene in c/m**2\n",
    "pW     = e0*E*(er2-1);        #polarisation of water in c/m**2\n",
    " \n",
    "\n",
    "#result\n",
    "print'polarisation of benzene = %3.2e'%pB,'c/m**2';\n",
    "print'polarisation of water = %3.2e.'%pW,'c/m**2';"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 4.6,Page No:4.10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "percentage contribution from ionic polaristion = 59.82 %\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#variable declaration\n",
    "er0  = 5.6;              #static dielectric cnstant of NaCl \n",
    "n    = 1.5;               #optical index of refraction\n",
    " \n",
    "\n",
    "#calculation\n",
    "er = er0-n**2;\n",
    "d  = ((er/float(er0))*100);   #percentage contribution from ionic polaristion in %\n",
    " \n",
    "#result \n",
    "print'percentage contribution from ionic polaristion = %3.2f'%d,'%';\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 4.7,Page No:4.10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "separation=1.69e-17 m\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#variable declaration\n",
    "alpha       = 0.18*10**-40;         #polarisability of He in F *m**2\n",
    "E           = 3*10**5;               #constant in V/m\n",
    "N           = 2.6*10**25;            #number of atoms in per m**3\n",
    "e           = 1.6*10**-19;\n",
    " \n",
    " \n",
    "#formula\n",
    "#P=N*p\n",
    "#charge of He=2*electron charge\n",
    "#p=2(e*d)\n",
    "#calculation\n",
    "P      = N*alpha*E;                   #in coul/m**2\n",
    "p      = P/float(N);                  #polarisation of He in coul.m\n",
    "d      = p/float(2*e);                #separation between charges in m\n",
    " \n",
    " \n",
    "#result \n",
    "print'separation=%3.2e'%d,'m';\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "# Example 4.8,Page No:4.10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "oriental polarisation=9.66e-08 coul/m**2\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#variable declaration\n",
    "N      = 10**27;                     #number of HCl molecules in molecules/m**3\n",
    "E      = 10**5;                      #electric field in V/m\n",
    "P      = 1.04*3.33*10**-30;          #permanent dipole moment in coul.m\n",
    "T      = 300;                        #temperature in kelvin\n",
    "K      = 1.38*10**-23;\n",
    " \n",
    " \n",
    "#calculation\n",
    "P0     = (N*(P**2)*E)/float(3*K*T);        #oriental polarisation in coul/m^2\n",
    "\n",
    " \n",
    "#result\n",
    "print'oriental polarisation=%3.2e'%P0,'coul/m**2';"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}