summaryrefslogtreecommitdiff
path: root/sample_notebooks/kartiksankhla/Chapter2_1.ipynb
blob: 821531df91cda2c37493254a5c2b00e5ef335f55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
{
 "metadata": {
  "name": "",
  "signature": "sha256:41d72ff7de4eab79477527ee635fed63748fe3041e37a18b80daacf784f19007"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter2-Radioactivity and Isotopes"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg88"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Exa2.1: : Page-88 (2011) \n",
      "#find Weight of one Curie of RaB and Weight of one Rutherford of RaB\n",
      "T = 26.8*60;    ## Half life of the substance, s\n",
      "C = 3.7e+010;   ## One curie, disintegration per sec\n",
      "N = 6.022137e+026; ## Avogadro number, per kmol\n",
      "m = 214.; ## Molecular weight of RaB, kg/kmol\n",
      "R = 1e+006; ## One Rutherford, disintegration per sec.\n",
      "W_C = C*T*m/(N*0.693); ## Weight of one Curie of RaB, Kg \n",
      "W_R = R*T*m/(N*0.693); ## Weight of one Rutherford of RaB, Kg \n",
      "print\"%s %.2e %s %.2e %s \"%(\"\\nWeight of one Curie of RaB : \",W_C,\" Kg\"and \" \\nWeight of one Rutherford of RaB : \",W_R,\" Kg\");\n",
      "\n",
      "## Result\n",
      "## Weight of one Curie of RaB : 3.051e-011 Kg \n",
      "## Weight of one Rutherford of RaB : 8.245e-016 Kg "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Weight of one Curie of RaB :  3.05e-11  \n",
        "Weight of one Rutherford of RaB :  8.25e-16  Kg \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg88"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.2 : : Page 88 (2011)\n",
      "#find The maximum activity of Na-24 and The time needed to produced 90 percent of the maximum activity\n",
      "import math\n",
      "T_h = 14.8; ## Half life of Na-24, hours\n",
      "Q = 1e+008; ## Production rate of Na-24, per sec\n",
      "L = 0.693/T_h; ## Decay constant, per sec\n",
      "t = 2.; ## Time after the bombardment, hours\n",
      "A = Q/3.7e+010*1000; ## The maximum activity of Na-24, mCi\n",
      "T = -1*math.log(0.1)/L; ## The time needed to produced 90% of the maximum activity, hour\n",
      "N = 0.9*Q*3600./L*math.e**(-L*t); ## Number of atoms of Na-24 left two hours after bombardment was stopped\n",
      "print'%s %.2f %s %.2f %s  %.2f %s  '%(\"\\nThe maximum activity of Na-24 = \",A,\" mCi\"and \"\\nThe time needed to produced 90 percent of the maximum activity =\",T,\" hrs\" and\"\\nNumber of atoms of Na-24 left two hours after bombardment was stopped =  \",N,\"\")\n",
      "\n",
      "\n",
      "## Result\n",
      "## The maximum activity of Na-24 = 2.7 mCi\n",
      "## The time needed to produced 90 percent of the maximum activity = 49.2 hrs \n",
      "## Number of atoms of Na-24 left two hours after bombardment was stopped = 6.30e+012  "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The maximum activity of Na-24 =  2.70 \n",
        "The time needed to produced 90 percent of the maximum activity = 49.17 \n",
        "Number of atoms of Na-24 left two hours after bombardment was stopped =    6300897280447.79   \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg89"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.3: : Page 89 (2011)\n",
      "#find The activity of K-40 and disintegrations\n",
      "T = 1.31e+09*365*24*60*60;    ## Half life of the substance,sec\n",
      "N = 6.022137e+026; ## Avogadro number.\n",
      "m = 0.35*0.012*10**-2; ## Mass of K-40, Kg.\n",
      "A = m*N*0.693/(T*40); ## Activity of K-40, disintegrations/sec. \n",
      "print'%s %.2e %s %.3f %s '%(\"\\nThe activity of K-40 = \",A,\" \"and \"disintegrations/sec = \",A/3.7e+004,\" micro-curie\");\n",
      "\n",
      "## Result\n",
      "## The activity of K-40 = 1.061e+004 disintegrations/sec = 0.287 micro-curie "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The activity of K-40 =  1.06e+04 disintegrations/sec =  0.287  micro-curie \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg89"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.4 : : Page 89 (2011)\n",
      "#find The age of the boat\n",
      "import math\n",
      "T = 5568;    ## Half life of the C-14,years\n",
      "D = 0.693/T; ## Disintegration constant, years^-1.\n",
      "N_0 = 15.6/D; ## Activity of fresh carbon, dpm .gm\n",
      "N = 3.9/D; ## Activity of an ancient wooden boat,dpm.gm.\n",
      "t = 1/(D)*math.log(N_0/N); ## Age of the boat, years\n",
      "print'%s %.2e %s'%(\"\\nThe age of the boat : \",t,\" years\")\n",
      "\n",
      "## Result\n",
      "## The age of the boat : 1.114e+004 years"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The age of the boat :  1.11e+04  years\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg90"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.5 : : Page 90 (2011)\n",
      "#find The activity of U-234 \n",
      "import math\n",
      "m_0 = 3e-06;## Initial mass of the U-234, Kg\n",
      "A = 6.022137e+026; ##Avagadro's number, atoms\n",
      "N_0 = m_0*A/234.; ## Initial number of atoms\n",
      "T = 2.50e+05; ## Half life, years\n",
      "D= 0.693/T; ## Disintegration constant\n",
      "t = 150000; ## Disintegration time, years\n",
      "m = m_0*math.e**(-D*t); ## Mass after time t,Kg\n",
      "activity = m*D/(365.*24.*60.*60.)*A/234.; ## Activity of U-234 after time t,dps\n",
      "print'%s %.1f %s %.2f %s'%(\"\\nThe activity of U-234 after \",t,\"\"and\" yrs = \",activity,\" disintegrations/sec\");\n",
      "\n",
      "## Result\n",
      "## The activity of U-234 after 150000 yrs = 4.478e+005 disintegrations/sec"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The activity of U-234 after  150000.0  447778.26  disintegrations/sec\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg90"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.6 : : Page 90 (2011)\n",
      "#find The number of alpha decays in Th-232\n",
      "import math\n",
      "A = 6.022137e+023; ##Avagadro's number, atoms\n",
      "N_0 = A/232.; ## Initial number of atoms\n",
      "t = 3.150e+07; ## Decay time, sec\n",
      "D = 1.58e-018; ## Disintegration constant,sec^-1\n",
      "N = D*t*N_0; ## Number of alpha decays in Th-232\n",
      "print'%s %.2e %s'%(\"\\nThe number of alpha decays in Th-232 =  \", N,\"\");\n",
      "\n",
      "## Result\n",
      "## The number of alpha decays in Th-232 = 1.29e+011"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The number of alpha decays in Th-232 =   1.29e+11 \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex7-pg90"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.7 : : Page 90 (2011)\n",
      "#find The maximum possible age of the earth crust\n",
      "import math\n",
      "T_238 = 4.5e+09;## Half life of U-238, years\n",
      "T_235 = 7.13e+08; ## Half life of U-238, years\n",
      "lambda_238 = 0.693/T_238; ## Disintegration constant of U-238, years^-1\n",
      "lambda_235 = 0.693/T_235; ## Disintegration constant of U-235, years^-1 \n",
      "N = 137.8; ## Abundances of U-238/U-235\n",
      "t = math.log(N)/(lambda_235 - lambda_238);## Age of the earth's crust, years\n",
      "print'%s %.2e %s'%(\"\\nThe maximum possible age of the earth crust = \",t,\" years\");\n",
      "\n",
      "## Result \n",
      "## The maximum possible age of the earth crust = 6.022e+009 years "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The maximum possible age of the earth crust =  6.02e+09  years\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg91"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.8 : : Page 91 (2011)\n",
      "#find The number of half lives in radon-222\n",
      "import math\n",
      "N = 10; ## Number of atoms left undecayed in Rn-222\n",
      "n = math.log(10)/math.log(2); ## Number of half lives in Ra-222\n",
      "print'%s %.2f %s'%(\"\\nThe number of half lives in radon-222 =  \", n,\"\");\n",
      "\n",
      "## Result\n",
      "## The number of half lives in radon-222 = 3.322  "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The number of half lives in radon-222 =   3.32 \n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex9-pg91"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.9 :  : Page 91 (2011)\n",
      "#find The weight of Po-210 after one year and The initial activity of the material\n",
      "import math\n",
      "M_Po = 209.9829; ## Mass of Polonium, g\n",
      "M_Pb = 205.9745; ## Mass of lead, g\n",
      "A = 6.22137e+023; ## Avogadro's number\n",
      "M_He = 4.0026; ## Mass of alpha particle, g\n",
      "C = 3e+08; ## Velocity of light, m/s\n",
      "T = 138*24*3600; ## Half life, sec\n",
      "P = 250; ## Power produced, joule/sec\n",
      "Q = (M_Po-M_Pb-M_He)*931.25; ## disintegration energy, MeV\n",
      "D = 0.693/T; ## Disintegration constant, per year\n",
      "N = P/(D*Q*1.60218e-013); ## Number of atoms, atom\n",
      "N_0 = N*math.e**(1.833); ## Number of atoms present initially, atom\n",
      "W = N_0/A*210; ## Weight of Po-210 after one year, g\n",
      "A_0 = N_0*D/(3.7e+010); ## Initial activity, curie\n",
      "print'%s %.2f %s %.2e %s'%(\"\\nThe weight of Po-210 after one year = \",W,\" g\"and\" \\nThe initial activity of the material = \",A_0,\" curies\");\n",
      "\n",
      "## Result\n",
      "## The weight of Po-210 after one year = 10.49 g \n",
      "## The initial activity of the material = 4.88e+004 curies"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The weight of Po-210 after one year =  10.49  \n",
        "The initial activity of the material =  4.88e+04  curies\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex10-pg91"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.10 : : Page 91 (2011)\n",
      "#find The decay constant for total emission and The decay constant for beta_decay lambda_b  and The decay constant for beta_decay lambda_a\n",
      "import math\n",
      "lambda_t = 0.693/(60.5*60);## Total decay constant, per sec\n",
      "lambda_a = 0.34*lambda_t;## Decay constant for alpha_decay, per sec\n",
      "lambda_b = 0.66*lambda_t;## Decay constant for beta_decay, per sec\n",
      "print'%s %.2e %s'%(\"\\nThe decay constant for total emission = \",lambda_t,\" /sec\");\n",
      "print'%s %.2e %s'%(\"\\nThe decay constant for beta_decay lambda_b = \",lambda_b,\" /sec\");\n",
      "print'%s %.2e %s'%(\"\\nThe decay constant for alpha_decay lambda_a = \",lambda_a,\" /sec\");\n",
      "\n",
      "## Result \n",
      "## The decay constant for total emission = 1.91e-004 /sec\n",
      "## The decay constant for beta_decay lambda_b = 1.26e-004 /sec\n",
      "## The decay constant for alpha_decay lambda_a = 6.49e-005 /sec "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The decay constant for total emission =  1.91e-04  /sec\n",
        "\n",
        "The decay constant for beta_decay lambda_b =  1.26e-04  /sec\n",
        "\n",
        "The decay constant for alpha_decay lambda_a =  6.49e-05  /sec\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex13-pg93"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.13 :  : Page 93 (2011)\n",
      "#find The half life of Pu-239 \n",
      "import math\n",
      "M_A = 4.;    ## Mass of alpha particle, amu\n",
      "M_U = 235.;    ##Mass of U-235, amu\n",
      "M_P = 239.;    ## Mass of P-239, amu\n",
      "Amount = 120.1;    ## quantity of P-239, g\n",
      "E_A = 5.144;    ## Energy of emitting alpha particles, Mev\n",
      "E_R = (2.*M_A)/(2.*M_U)*E_A;    ## The recoil energy of U-235, Mev\n",
      "E = E_R + E_A;    ## The energy released per disintegration, Mev\n",
      "P = 0.231;    ## Evaporation rate, watt\n",
      "D = P/(E*1.60218e-013);    ## Disintegration rate, per sec\n",
      "A = 6.022137e+023;    ## Avagadro's number, atoms\n",
      "N = Amount/M_P*A;    ## Number of nuclei in 120.1g of P-239\n",
      "T = 0.693/(D*3.15e+07)*N;    ## Half life of Pu_239, years\n",
      "print'%s %.2e %s'%(\"\\nThe half life of Pu-239 = \",T,\" years\");\n",
      "\n",
      "## Result \n",
      "## The half life of Pu-239 = 2.42e+004 years "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The half life of Pu-239 =  2.42e+04  years\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex14-pg93"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.14 : : Page 93 (2011)\n",
      "#find The disintegration rate of Au-199\n",
      "import math\n",
      "T_h_1 = 2.7*24*3600; ## Half life of Au-198, sec\n",
      "T_h_2 = 3.15*24*3600; ## Half life of Au-199, sec\n",
      "S_1 = 99e-028; ## Crossection for first reaction, Sq.m\n",
      "S_2 = 2.6e-024; ## Crossection for second reaction, Sq.m\n",
      "I = 1e+018; ## Intensity of radiation, per Sq.m per sec\n",
      "L_1 = I*S_1;    ## Decay constant of Au-197, per sec\n",
      "L_2 = 0.693/T_h_1+I*S_2; ## Decay constant of Au-198, per sec\n",
      "L_3 = 0.693/T_h_2; ## Decay constant of Au-199, per sec\n",
      "N_0 = 6.022137e+023; ## Avogadro number\n",
      "N_1 = N_0/197.; ## Initial number of atoms of Au-197\n",
      "t = 30.*3600.; ## Given time, sec\n",
      "p = (math.exp(-L_1*t))/((L_2-L_1)*(L_3-L_1));\n",
      "q = (math.exp(-L_2*t))/((L_1-L_2)*(L_3-L_2));\n",
      "r = (math.exp(-L_3*t))/((L_1-L_3)*(L_2-L_3));\n",
      "N3 = N_1*L_1*L_2*(p+q+r);\n",
      "N_199 = N3;\n",
      "L = L_3*N_199; ## Disintegration rate of Au-199, per sec\n",
      "print'%s %.2e %s'%(\"\\nThe disintegration rate of Au-199 =  \", L,\"\");\n",
      "\n",
      "## Result\n",
      "## The disintegration rate of Au-199 = 1.9e+012  (Wrong answer in the textbook)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The disintegration rate of Au-199 =   1.88e+12 \n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15-pg94"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.15 : : Page 94 (2011)\n",
      "#find The maximum activity of Na-24  and The activity after a continuous bombardment\n",
      "import math\n",
      "Y = 110e-03;## Yield of Na-24, mCi/hr\n",
      "T = 14.8;## Half life of Na-24, hours\n",
      "t = 8;## Time after which activity to be compute, hours\n",
      "D = 0.693/T;## Disintegration constant, hours^-1\n",
      "A = 1.44*Y*T;## Maximum activity of Na-24, Ci\n",
      "A_C = A*(1-math.e**(-D*t));## Activity after a continuous bombardment, Ci\n",
      "Activity = A_C*(math.e**(-D*t));## Activity after 8hours, Ci\n",
      "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe maximum activity of Na-24 = \",A,\" Ci\"and \"\\nThe activity after a continuous bombardment = \",A_C,\" Ci\"and \"\\nThe activity after 8hours = \",Activity,\" Ci\")\n",
      "\n",
      "\n",
      "## Result\n",
      "## The maximum activity of Na-24 = 2.344 Ci\n",
      "## The activity after a continuous bombardment = 0.7324 Ci\n",
      "## The activity after 8hours = 0.50360 Ci"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The maximum activity of Na-24 =  2.34 \n",
        "The activity after a continuous bombardment =  0.73 \n",
        "The activity after 8hours =  0.50  Ci \n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex16-pg94"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.16 : : Page 94 (2011)\n",
      "#find The energy of beta rays emitted per gram of tissue\n",
      "import math\n",
      "A_0 = 3.7e+07;    ## Initial activity, disintegrations per sec\n",
      "T = 12.6;    ## Half life of I-130, hours\n",
      "t = 24*3600;    ## time for dose absorbed calculation,sec\n",
      "E = 0.29*1.6e-06;    ## Average energy of beta rays, ergs\n",
      "m = 2;    ## Mass of iodine thyroid tissue, gm\n",
      "l = 0.693/(T*3600);    ## Disintegration constant, sec^-1\n",
      "N_0 = A_0/l;    ## Initial number of atoms\n",
      "N = N_0*(1-math.e**(-l*t));    ## Number of average atoms disintegrated\n",
      "E_A = N*E;    ## Energy of beta rays emitted, ergs\n",
      "E_G = E_A/(2*97.00035);    ## Energy of beta rays emitted per gram of tissue, REP  \n",
      "print'%s %.2f %s'%(\"\\nThe energy of beta rays emitted per gram of tissue = \",E_G,\" REP\");\n",
      "\n",
      "## Result\n",
      "## The energy of beta rays emitted per gram of tissue = 4245.0 REP "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The energy of beta rays emitted per gram of tissue =  4245.02  REP\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex18-pg95"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.18 : : Page 95 (2011)\n",
      "#find The activity of Au-198 and The maximum amount of Au-198 produced\n",
      "import math\n",
      "N_0 = 6.022137e+023; ##  Avagadro number\n",
      "d = 0.02; ## Thickness of the foil, cm\n",
      "R = 19.3; ## Density of Au,g/cc\n",
      "N_1 = d*R/197.*N_0; ## Initial number of Au-197 nuclei per unit area of foil,cm^-2\n",
      "T_H = 2.7*24.*3600.; ## Half life of Au-198,sec\n",
      "L = math.log(2)/T_H; ## Decay constant for Au-198,sec^-1\n",
      "I = 10**12; ## Intensity of neutron beam,neutrons/cm^2/sec\n",
      "S = 97.8e-024; ## Cross section for reaction,cm^-2\n",
      "t = 5*60.; ## Reaction time,s\n",
      "A = S*I*N_1*(1-math.e**(-L*t)); ## Activity of Au-198,cm^-2sec^-1\n",
      "N_2 = S*I*N_1/L; ## The maximum amount of Au-198 produced,cm^-2\n",
      "print'%s %.2e %s %.2e %s '%(\"\\nThe activity of Au-198 = \",A,\" per Sq.cm per sec\"and \"\\nThe maximum amount of Au-198 produced = \",N_2,\" per Sq.cm\");\n",
      "\n",
      "## Result\n",
      "## The activity of Au-198 = 1.028e+008 per Sq.cm per sec\n",
      "## The maximum amount of Au-198 produced = 3.88e+016 per Sq.cm "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The activity of Au-198 =  1.03e+08 \n",
        "The maximum amount of Au-198 produced =  3.88e+16  per Sq.cm \n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex19-pg95"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.19 : : Page 95 (2011)\n",
      "#find The power released by the gm molecule of Pu-238 and The time in which power reduces to 1/8 time of its initial value\n",
      "import math\n",
      "N_0 = 6.022137e+023; ##  Avagadro number \n",
      "T_P = 90.*365.*24.*3600.; ## Half life of Pu-238,s\n",
      "L_P = 0.693/T_P ; ## Decay constant of Pu-238,s^-1\n",
      "E = 5.5; ## Energy of alpha particle, MeV\n",
      "P =E*L_P*N_0; ## Power released by the gm molecule of Pu-238,MeV/s\n",
      "t = math.log(8)/(L_P*365.*24.*3600.); ## Time in which power reduces to 1/8 time of its initial value \n",
      "print'%s %.2e %s %.1f %s '%(\"\\nThe power released by the gm molecule of Pu-238 = \",P,\" MeV/s\"and  \"\\nThe time in which power reduces to 1/8 time of its initial value = \",t,\" yrs\")\n",
      "\n",
      "## Result\n",
      "## The power released by the gm molecule of Pu-238 = 8.09e+014 MeV/s \n",
      "## The time in which power reduces to 1/8 time of its initial value = 270 yrs "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The power released by the gm molecule of Pu-238 =  8.09e+14 \n",
        "The time in which power reduces to 1/8 time of its initial value =  270.1  yrs \n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex20-pg96"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##  Exa2.20 : : Page 96 (2011)\n",
      "#find The required time for decay of daughter nucleus and The number of nuclei of daughter isotope\n",
      "import math\n",
      "N_1 = 10**20; ## Number of nuclei of parent isotopes\n",
      "T_P = 10**4; ## Half life of parent nucleus,years\n",
      "T_D = 20.; ## Half life of daughter nucleus,years\n",
      "T = 10**4; ## Given time,years\n",
      "L_P = 0.693/T_P ; ## Decay constant of parent nucleus,years^-1\n",
      "L_D = 0.693/T_D ; ## Decay constant of daughter nucleus,years^-1\n",
      "t_0 = math.log(0.03)/(L_P-L_D); ## Required time for decay of daughter nucleus,years\n",
      "N = L_P/L_D*(math.e**(-L_P*T)-math.e**(-L_D*T))*N_1; ## Number of nuclei of daughter isotope\n",
      "print'%s %.2f %s %.0e %s'%(\"\\nThe required time for decay of daughter nucleus =\",t_0,\" yr\"and \" \\nThe number of nuclei of daughter isotope = \",N,\" \");\n",
      "\n",
      "## Result\n",
      "## The required time for decay of daughter nucleus = 101 yr \n",
      "## The number of nuclei of daughter isotope = 1e+017  "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The required time for decay of daughter nucleus = 101.40  \n",
        "The number of nuclei of daughter isotope =  1e+17  \n"
       ]
      }
     ],
     "prompt_number": 17
    }
   ],
   "metadata": {}
  }
 ]
}