summaryrefslogtreecommitdiff
path: root/sample_notebooks/ajinkyakhair/chapter2.ipynb
blob: 5bd122ad0e867a1426ae18b9315fb92fdc945ed1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
{
 "metadata": {
  "name": "",
  "signature": "sha256:74a00fabf3de3a229499fd336c46d9a546ea42ad7cb4fbe98a92a6ea72f21fa8"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 2: Bonding in Solids"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.1,Page number 62"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, eV/J\n",
      "r = 3.147*10**-10;     # Nearest neighbour distance for KCl, m\n",
      "n = 9.1;    # Repulsive exponent of KCl\n",
      "A = 1.748;  # Madelung constant for lattice binding energy\n",
      "E = A*e**2/(4*math.pi*epsilon_0*r)*(n-1)/n/e;     # Binding energy of KCl, eV\n",
      "print\"The binding energy of KCl = \",round(E,4),\"eV\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The binding energy of KCl =  7.10982502818 eV\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2,Page number 62"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "\n",
      "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
      "N = 6.023*10**23;     # Avogadro's number\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, eV/J\n",
      "a0 = 5.63*10**-10;      # Lattice parameter of NaCl, m\n",
      "r0 = a0/2;      # Nearest neighbour distance for NaCl, m\n",
      "n = 8.4;    # Repulsive exponent of NaCl\n",
      "A = 1.748;  # Madelung constant for lattice binding energy\n",
      "E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n/e;     # Binding energy of NaCl, eV\n",
      "print\"The binding energy of NaCl = \",round(E*N*e/(4.186*1000),4),\"kcal/mol\" ;\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The binding energy of NaCl =  181.1005 kcal/mol\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.3,Page number 62"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "\n",
      "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
      "N = 6.023*10**23;     # Avogadro's number\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, eV/J\n",
      "E = 162.9*10**3;  # Binding energy of KCl, cal/mol\n",
      "n = 8.6;    # Repulsive exponent of KCl\n",
      "A = 1.747;  # Madelung constant for lattice binding energy\n",
      "# As lattice binding energy, E = A*e**2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0\n",
      "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n;     # Nearest neighbour distance of KCl, m\n",
      "print\"The nearest neighbour distance of KCl = \",round(r0*10**10,4),\"angstorm\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The nearest neighbour distance of KCl =  3.1376 angstorm\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.4,Page number 63"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "\n",
      "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
      "N = 6.023*10**23;     # Avogadro's number\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, eV/J\n",
      "E = 152*10**3;  # Binding energy of CsCl, cal/mol\n",
      "n = 10.6;    # Repulsive exponent of CsCl\n",
      "A = 1.763;  # Madelung constant for lattice binding energy\n",
      "\n",
      "# As lattice binding energy, E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for r0\n",
      "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n;     # Nearest neighbour distance of CsCl, m\n",
      "print\"The nearest neighbour distance of CsCl = \",round(r0*10**10,4),\"angstrom\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The nearest neighbour distance of CsCl =  3.4776 angstrom\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.5,Page number 63"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "\n",
      "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n",
      "N = 6.023*10**23;     # Avogadro's number\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, eV/J\n",
      "r0 = 6.46*10**-10;     # Nearest neighbour distance of NaI\n",
      "E = 157.1*10**3;  # Binding energy of NaI, cal/mol\n",
      "A = 1.747;  # Madelung constant for lattice binding energy\n",
      "\n",
      "# As lattice binding energy, E = -A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for n\n",
      "n = 1/(1+(4.186*E*4*pi*epsilon_0*r0)/(N*A*e**2));   # Repulsive exponent of NaI\n",
      "print\"\\nThe repulsive exponent of NaI = \",round(n,4);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The repulsive exponent of NaI =  0.363\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.6,Page number 63"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "\n",
      "e = 1.6*10**-19;   # Energy equivalent of 1 eV, eV/J\n",
      "a0 = 2.8158*10**-10;     # Nearest neighbour distance of solid\n",
      "A = 1.747;  # Madelung constant for lattice binding energy\n",
      "n = 8.6;    # The repulsive exponent of solid\n",
      "c = 2;  # Structural factor for rocksalt\n",
      "# As n = 1 + (9*c*a0**4)/(K0*e**2*A), solving for K0\n",
      "K0 = 9*c*a0**4/((n-1)*e**2*A);        # Compressibility of solid, metre square per newton\n",
      "print\"The compressibility of the solid = \", \"{0:.3e}\".format(K0),\"metre square per newton\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The compressibility of the solid =  3.329e-01 metre square per newton\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.7,Page number 69"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "\n",
      "chi_diff = 1;   # Electronegativity difference between the constituent of elements of solid\n",
      "percent_ion = 100*(1-math.e**(-(0.25*chi_diff**2)));  # Percentage ionic character present in solid given by Pauling\n",
      "print\"The percentage ionic character present in solid = \",round(percent_ion,2),\"percent \";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The percentage ionic character present in solid =  22.12 percent \n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.8,Page number 69"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data\n",
      "\n",
      "Eh_GaAs = 4.3;       # Homopolar gap of GaAs compound, eV\n",
      "C_GaAs = 2.90;      # Ionic gap of GaAs compound, eV\n",
      "Eh_CdTe = 3.08;      # Homopolar gap of CdTe compound, eV\n",
      "C_CdTe = 4.90;      # Ionic gap of CdTe compound, eV\n",
      "\n",
      "fi_GaAs = C_GaAs**2/(Eh_GaAs**2 + C_GaAs**2);\n",
      "fi_CdTe = C_CdTe**2/(Eh_CdTe**2 + C_CdTe**2);\n",
      "print\"The fractional ionicity of GaAs = \",round(fi_GaAs,4);\n",
      "print\"The fractional ionicity of CdTe = \",round(fi_CdTe,4);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The fractional ionicity of GaAs =  0.3126\n",
        "The fractional ionicity of CdTe =  0.7168\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}