summaryrefslogtreecommitdiff
path: root/sample_notebooks/Vedantam Lakshmi Manasa/Chapter_2_Electric.ipynb
blob: cdc8b25e0bca7ece9f02e1e41c1c53004b464dac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 2 Electric Fields"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2_5 pgno:65"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Maximum field =  V/m per volt 42064315640.1\n"
     ]
    }
   ],
   "source": [
    "#Chapter 2, Example 5, page 65\n",
    "#Calculate the maximum field at the sphere surface\n",
    "#Calulating Field at surface E based on figure 2.31 and table 2.3\n",
    "from math import pi\n",
    "Q1 = 0.25\n",
    "e0 = 8.85418*10**-12 #Epselon nought\n",
    "RV1= ((1/0.25**2)+(0.067/(0.25-0.067)**2)+(0.0048/(0.25-0.067)**2))\n",
    "RV2= ((0.25+0.01795+0.00128)/(0.75-0.067)**2)\n",
    "RV= RV1+RV2\n",
    "E = (Q1*RV)/(4*pi*e0)\n",
    "print\"Maximum field =  V/m per volt\",E\n",
    "\n",
    "#Answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2_6 pgno:66"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "#Chapter 2, Exmaple 6, page 66\n",
    "#calculation based on figure 2.32\n",
    "\n",
    "#(a)Charge on each bundle\n",
    "print\"Part a\\t\"\n",
    "req = (0.0175*0.45)**0.5\n",
    "print\"Equivalent radius =  m \", req\n",
    "from math import log\n",
    "from math import pi\n",
    "V = 400*10**3 #Voltage\n",
    "H = 12. #bundle height in m\n",
    "d = 9. #pole to pole spacing in m\n",
    "e0 = 8.85418*10**-12 #Epselon nought\n",
    "Hd = ((2*H)**2+d**2)**0.5#2*H**2 + d**2\n",
    "Q = V*2*pi*e0/(log((2*H/req))-log((Hd/d)))\n",
    "q = Q/2\n",
    "print\"Charge per bundle =  uC/m \",Q #micro C/m\n",
    "print\"Charge per sunconducter =  uC/m \",q #micro C/m\n",
    "\n",
    "#(b part i)Maximim & average surface feild\n",
    "print\"\\tPart b\"\n",
    "print\"\\tSub part 1\\t\"\n",
    "r = 0.0175 #subconductor radius\n",
    "R = 0.45 #conductor to subconductor spacing\n",
    "MF = (q/(2*pi*e0))*((1/r)+(1/R)) # maximum feild\n",
    "print\"Maximum feild =  kV/m \\t\",MF\n",
    "MSF = (q/(2*pi*e0))*((1/r)-(1/R)) # maximum surface feild\n",
    "print\"Maximum feild =  kV/m \\t\",MSF\n",
    "ASF = (q/(2*pi*e0))*(1/r) # Average surface feild\n",
    "print\"Maximum feild =  kV/m \\t\",ASF\n",
    "\n",
    "#(b part ii) Considering the two sunconductors on the left\n",
    "print\"\\tSub part 2\\t\"\n",
    "#field at the outer point of subconductor #1 \n",
    "drO1 = 1/(d+r)\n",
    "dRrO1 = 1/(d+R+r)\n",
    "EO1 =  MF -((q/(2*pi*e0))*(drO1+dRrO1))\n",
    "print\"EO1 =  kV/m \\t\",EO1\n",
    "#field at the outer point of subconductor #2 \n",
    "drO2 = 1/(d-r)\n",
    "dRrO2 = 1/(d-R-r)\n",
    "EO2 =  MF -((q/(2*pi*e0))*(dRrO2+drO2))\n",
    "print\"EO2 =  kV/m \\t\",EO2\n",
    "\n",
    "#field at the inner point of subconductor #1 \n",
    "drI1 = 1/(d-r)\n",
    "dRrI1 = 1/(d+R-r)\n",
    "EI1 =  MSF -((q/(2*pi*e0))*(drI1+dRrI1))\n",
    "print\"EI1 =  kV/m \\t\",EI1\n",
    "#field at the inner point of subconductor #2 \n",
    "drI2 = 1/(d+r)\n",
    "dRrI2 = 1/(d-R+r)\n",
    "EI2 =  MSF -((q/(2*pi*e0))*(dRrI2+drI2)) \n",
    "print\"EI2 =  kV/m \\t\",EI2\n",
    "\n",
    "#(part c)Average of the maximim gradient\n",
    "print\"\\tPart c\\t\"\n",
    "Eavg = (EO1+EO2)/2\n",
    "print\"The average of the maximum gradient =  kV/m \\t\",Eavg\n",
    "\n",
    "\n",
    "#Answers might vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2_7 pgno:69"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Electric Feild =  V/m \t30015596280.4\n"
     ]
    }
   ],
   "source": [
    "#Chapter 2, Exmaple 7, page 69\n",
    "#Electric feild induced at x\n",
    "from math import pi\n",
    "e0 = 8.85418*10**-12 #Epselon nought\n",
    "q = 1 # C/m\n",
    "C = (q/(2*pi*e0))\n",
    "#Based on figure 2.33\n",
    "E = C-(C*(1./3.+1./7.))+(C*(1+1./5.+1./9.))+(C*(1./5.+1./9.))-(C*(1./3.+1./7.))\n",
    "print\"Electric Feild =  V/m \\t\",E\n",
    "\n",
    "#Answers might vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2_8 pgno:70"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Thickness of graded design=  cm  4.24264068712\n",
      "Curve =  cm**2  62.4264068712\n",
      "V1 =  cm**3  47402.906725\n",
      "Thickness of regular design =  cm  14.684289433\n",
      "V2 =  cm**3  861.944682812\n"
     ]
    }
   ],
   "source": [
    "#Chapter 2, Exmaple 8, page 70\n",
    "#Calculate the volume of the insulator\n",
    "#Thinkness of graded design\n",
    "from math import e\n",
    "from math import pi\n",
    "V = 150*(2)**0.5\n",
    "Ebd = 50\n",
    "T = V/Ebd\n",
    "print\"\\nThickness of graded design=  cm \",T\n",
    "#Based on figure 2.24\n",
    "r = 2 # radius of the conductor\n",
    "l = 10 #length of graded cylinder; The textbook uses 10 instead of 20\n",
    "zr = l*(T+r)\n",
    "print\"Curve =  cm**2 \",zr\n",
    "#Volume of graded design V1\n",
    "V1 = 4*pi*zr*(zr-r)\n",
    "print\"V1 =  cm**3 \",V1 #Unit is wrong in the textbook\n",
    "#Thickness of regular design as obtained form Eq.2.77\n",
    "pow = V/(2*Ebd)\n",
    "t = 2*(e**pow-1)\n",
    "print\"Thickness of regular design =  cm \",t\n",
    "#Volume of regular design V2\n",
    "V2 = pi*((2+t)**2-4)\n",
    "print\"V2 =  cm**3 \",V2#unit not mentioned in textbook\n",
    " \n",
    "#Answers may vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2_11 pgno:75"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The values of Phi2 and Phi4 are: [[  -3.6568      326.5       ]\n",
      " [ 261.92857143   -4.37537287]]\n"
     ]
    }
   ],
   "source": [
    "#Chapter 2, Exmaple 11, page 75\n",
    "#Calculate the potential within the mesh\n",
    "#Based on figure 2.38(b)\n",
    "#equations are obtained using Eq.2.46\n",
    "import numpy\n",
    "from numpy import linalg\n",
    "A1 = 1/2*(0.54+0.16)\n",
    "A2 = 1/2*(0.91+0.14)\n",
    "S = numpy.matrix([[0.5571, -0.4571, -0.1],[-0.4751, 0.828, 0.3667],[-0.1, 0.667, 0.4667]])\n",
    "#By obtaining the elements of the global stiffness matrix(Sadiku,1994)\n",
    "#and by emplying the Eq.2.49(a)\n",
    "S1 = numpy.matrix([[1.25, -0.014],[-0.014, 0.8381]])\n",
    "S2 = numpy.matrix([[-0.7786, -0.4571],[-0.4571, -0.3667]])\n",
    "Phi13 = numpy.matrix([[0], [10]])\n",
    "val1 = S2*Phi13\n",
    "Phi24 = val1/S1\n",
    "print\"The values of Phi2 and Phi4 are:\",Phi24\n",
    "\n",
    "#Answers may vary due to round of error  \n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}