summaryrefslogtreecommitdiff
path: root/sample_notebooks/UmangAgarwal/Sample_Notebook_Umang_1.ipynb
blob: 53a291bcbf6d4c8b321b8b132980eafe581d9a45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# BASIC CONCEPTS"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.1 Page 16-17"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " \n",
      " Rate of Heat Transfer per unit area = 0.74  W\n"
     ]
    }
   ],
   "source": [
    "# L=.045;   \t\t \t\t\t#[m] - Thickness of conducting wall\n",
    "delT = 350 - 50;  \t\t      #[C] - Temperature Difference across the Wall\n",
    "k=370;    \t\t\t\t\t#[W/m.C] - Thermal Conductivity of Wall Material\n",
    "#calculations\n",
    "#Using Fourier's Law eq 1.1\n",
    "q = k*delT/(L*10**6);    \t\t\t#[MW/m^2] - Heat Flux\n",
    "#results\n",
    "print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer per unit area =\",q,\" W\");\n",
    "#END"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "# Example 1.2 Page 17"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " \n",
      " Rate of Heat Transfer per unit area = 29452.50  W\n",
      "\n",
      " \n",
      " The Temperature Gradient in the flow direction = -700.00  C/m\n"
     ]
    }
   ],
   "source": [
    "L = .15;   \t\t \t\t\t#[m] - Thickness of conducting wall\n",
    "delT = 150 - 45;  \t\t      #[C] - Temperature Difference across the Wall\n",
    "A = 4.5;                           #[m^2] - Wall Area\n",
    "k=9.35;    \t\t\t\t\t#[W/m.C] - Thermal Conductivity of Wall Material\n",
    "#calculations\n",
    "#Using Fourier's Law eq 1.1\n",
    "Q = k*A*delT/L;    \t\t\t#[W] - Heat Transfer\n",
    "#Temperature gradient using Fourier's Law\n",
    "TG = - Q/(k*A);                   #[C/m] - Temperature Gradient\n",
    "#results\n",
    "print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer per unit area =\",Q,\" W\");\n",
    "print '%s %.2f %s' %(\"\\n \\n The Temperature Gradient in the flow direction =\",TG,\" C/m\");\n",
    "#END"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.3 Page 17-18"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " \n",
      " Area of the wall = 0.76  m^2\n"
     ]
    }
   ],
   "source": [
    "x = .0825;   \t\t \t\t\t#[m] - Thickness of side wall of the conducting oven\n",
    "delT = 175 - 75;  \t\t      #[C] - Temperature Difference across the Wall\n",
    "k=0.044;   \t\t\t\t\t#[W/m.C] - Thermal Conductivity of Wall Insulation\n",
    "Q = 40.5;                          #[W] - Energy dissipitated by the electric coil withn the oven  \n",
    "#calculations\n",
    "#Using Fourier's Law eq 1.1\n",
    "A = (Q*x)/(k*delT);    \t\t#[m^2] - Area of wall\n",
    "#results\n",
    "print '%s %.2f %s' %(\"\\n \\n Area of the wall =\",A,\" m^2\");\n",
    "#END\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.4 Page 18-19"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " \n",
      " Rate of Heat Transfer = 8400.00  W\n"
     ]
    }
   ],
   "source": [
    "delT = 300-20;  \t\t            #[C] - Temperature Difference across the Wall\n",
    "h = 20;    \t\t\t\t\t#[W/m^2.C] - Convective Heat Transfer Coefficient\n",
    "A = 1*1.5;                           #[m^2] - Wall Area\n",
    "#calculations\n",
    "#Using Newton's Law of cooling eq 1.6\n",
    "Q = h*A*delT;        \t\t\t#[W] - Heat Transfer\n",
    "#results\n",
    "print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer =\",Q,\" W\");\n",
    "#END"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.5 Page 19"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Electric Power to be supplied = Convective Heat loss\n",
      "\n",
      " \n",
      " Rate of Heat Transfer = 63.60  W\n"
     ]
    }
   ],
   "source": [
    "L=.15;   \t\t \t\t\t#[m] - Length of conducting wire\n",
    "d = 0.0015;                       #[m] - Diameter of conducting wire\n",
    "A = 22*d*L/7;                     #[m^2] - Surface Area exposed to Convection\n",
    "delT = 120 - 100;  \t\t      #[C] - Temperature Difference across the Wire\n",
    "h = 4500;    \t\t\t\t\t#[W/m^2.C] - Convective Heat Transfer Coefficient\n",
    "print 'Electric Power to be supplied = Convective Heat loss';\n",
    "#calculations\n",
    "#Using Newton's Law of cooling eq 1.6\n",
    "Q = h*A*delT;        \t\t\t#[W] - Heat Transfer\n",
    "Q = round(Q,1);\n",
    "#results\n",
    "print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer =\",Q,\" W\");\n",
    "#END"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.6 Page 20-21"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " \n",
      " Rate of Heat Transfer = 4343.08  W\n",
      "\n",
      " The equivalent thermal resistance = 0.06  C/W\n",
      "\n",
      " The equivalent convection coefficient = 11.14  W/(m^2 * C)\n"
     ]
    }
   ],
   "source": [
    "T1 = 300 + 273;  \t\t                  #[K] - Temperature of 1st surface\n",
    "T2 = 40 + 273;                           #[K] - Temperature of 2nd surface\n",
    "A = 1.5;                                 #[m^2] - Surface Area\n",
    "F = 0.52;    \t\t\t\t       #[dimensionless] - The value of Factor due geometric location and emissivity\n",
    "sigma = 5.67*(10**-8)                    #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant\n",
    "#calculations\n",
    "#Using Stephen-Boltzmann Law eq 1.9\n",
    "Q = F*sigma*A*(T1**4 - T2**4)   \t    #[W] - Heat Transfer\n",
    "#Equivalent Thermal Resistance using eq 1.10\n",
    "Rth = (T1-T2)/Q;                     #[C/W] - Equivalent Thermal Resistance\n",
    "#Equivalent convectoin coefficient using h*A*(T1-T2) = Q\n",
    "h = Q/(A*(T1-T2));                   #[W/(m^2*C)] - Equivalent Convection Coefficient\n",
    "#results\n",
    "print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer =\",Q,\" W\");\n",
    "print '%s %.2f %s' %(\"\\n The equivalent thermal resistance =\",Rth,\" C/W\");\n",
    "print '%s %.2f %s' %(\"\\n The equivalent convection coefficient =\",h,\" W/(m^2 * C)\");\n",
    "#END"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 1.7 Page 21-22"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " \n",
      " Rate of Heat Transfer = 313.86  C\n"
     ]
    }
   ],
   "source": [
    "L = 0.025;                                #[m] - Thickness of plate\n",
    "A = 0.6*0.9;                              #[m^2] - Area of plate   \n",
    "Ts = 310;  \t\t                         #[C] - Surface Temperature of plate\n",
    "Tf = 15;                                  #[C] - Temperature of fluid(air)\n",
    "h = 22;    \t\t\t\t\t       #[W/m^2.C] - Convective Heat Transfer Coefficient\n",
    "Qr = 250;    \t\t\t\t       #[W] - Heat lost from the plate due to radiation\n",
    "k = 45;    \t\t\t\t\t       #[W/m.C] - Thermal Conductivity of Plate\n",
    "#calculations\n",
    "# In this problem, heat conducted by the plate is removed by a combination of convection and radiation\n",
    "# Heat conducted through the plate = Convection Heat losses + Radiation Losses\n",
    "# If Ti is the internal plate temperature, then heat conducted = k*A*(Ts-Ti)/L\n",
    "Qc = h*A*(Ts-Tf);                        #[W] - Convection Heat Loss\n",
    "Ti = Ts + L*(Qc + Qr)/(A*k);   \t       #[C] - Inside plate Temperature\n",
    "#results\n",
    "print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer =\",Ti,\" C\");\n",
    "#END"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "# Example 1.8 Page 22"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " \n",
      " The temperature Gradient = -1352.21  C/m\n"
     ]
    }
   ],
   "source": [
    "Ts = 250;  \t\t                         #[C] - Surface Temperature\n",
    "Tsurr = 110;                              #[C] - Temperature of surroundings\n",
    "h = 75;    \t\t\t\t\t       #[W/m^2.C] - Convective Heat Transfer Coefficient\n",
    "F = 1;    \t\t\t\t             #[dimensionless] - The value of Factor due geometric location and emissivity\n",
    "sigma = 5.67*(10**-8)                    #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant\n",
    "k = 10;    \t\t\t\t\t       #[W/m.C] - Thermal Conductivity of Solid\n",
    "#calculations\n",
    "# Heat conducted through the plate = Convection Heat losses + Radiation Losses\n",
    "qr = F*sigma*((Ts+273)**4-(Tsurr+273)**4)    #[W/m^2] - #[W] - Heat lost per unit area from the plate due to radiation\n",
    "qc = h*(Ts-Tsurr);                           #[W/m^2] - Convection Heat Loss per unit area\n",
    "TG = -(qc+qr)/k;   \t                      #[C/m] - Temperature Gradient\n",
    "#results\n",
    "print '%s %.2f %s' %(\"\\n \\n The temperature Gradient =\",TG,\" C/m\");\n",
    "#END"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}