1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"Sample Notebook - Heat and Mass Transfer by R.K. Rajput : Chapter 1 - Basic Concepts\n",
"author: Umang Agarwal\n",
"\n",
"\n",
"# Example 1.1 Page 16-17\n",
"\n",
"L=.045; \t\t \t\t\t#[m] - Thickness of conducting wall\n",
"delT = 350 - 50; \t\t #[C] - Temperature Difference across the Wall\n",
"k=370; \t\t\t\t\t#[W/m.C] - Thermal Conductivity of Wall Material\n",
"#calculations\n",
"#Using Fourier's Law eq 1.1\n",
"q = k*delT/(L*10**6); \t\t\t#[MW/m^2] - Heat Flux\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer per unit area =\",q,\" W\");\n",
"#END\n",
"\n",
"# Example 1.2 Page 17\n",
"\n",
"L = .15; \t\t \t\t\t#[m] - Thickness of conducting wall\n",
"delT = 150 - 45; \t\t #[C] - Temperature Difference across the Wall\n",
"A = 4.5; #[m^2] - Wall Area\n",
"k=9.35; \t\t\t\t\t#[W/m.C] - Thermal Conductivity of Wall Material\n",
"#calculations\n",
"#Using Fourier's Law eq 1.1\n",
"Q = k*A*delT/L; \t\t\t#[W] - Heat Transfer\n",
"#Temperature gradient using Fourier's Law\n",
"TG = - Q/(k*A); #[C/m] - Temperature Gradient\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer per unit area =\",Q,\" W\");\n",
"print '%s %.2f %s' %(\"\\n \\n The Temperature Gradient in the flow direction =\",TG,\" C/m\");\n",
"#END\n",
"\n",
"# Example 1.3 Page 17-18\n",
"\n",
"x = .0825; \t\t \t\t\t#[m] - Thickness of side wall of the conducting oven\n",
"delT = 175 - 75; \t\t #[C] - Temperature Difference across the Wall\n",
"k=0.044; \t\t\t\t\t#[W/m.C] - Thermal Conductivity of Wall Insulation\n",
"Q = 40.5; #[W] - Energy dissipitated by the electric coil withn the oven \n",
"#calculations\n",
"#Using Fourier's Law eq 1.1\n",
"A = (Q*x)/(k*delT); \t\t#[m^2] - Area of wall\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n Area of the wall =\",A,\" m^2\");\n",
"#END\n",
"\n",
"# Example 1.4 Page 18-19\n",
"\n",
"delT = 300-20; \t\t #[C] - Temperature Difference across the Wall\n",
"h = 20; \t\t\t\t\t#[W/m^2.C] - Convective Heat Transfer Coefficient\n",
"A = 1*1.5; #[m^2] - Wall Area\n",
"#calculations\n",
"#Using Newton's Law of cooling eq 1.6\n",
"Q = h*A*delT; \t\t\t#[W] - Heat Transfer\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer =\",Q,\" W\");\n",
"#END\n",
"\n",
"# Example 1.5 Page 19\n",
"\n",
"L=.15; \t\t \t\t\t#[m] - Length of conducting wire\n",
"d = 0.0015; #[m] - Diameter of conducting wire\n",
"A = 22*d*L/7; #[m^2] - Surface Area exposed to Convection\n",
"delT = 120 - 100; \t\t #[C] - Temperature Difference across the Wire\n",
"h = 4500; \t\t\t\t\t#[W/m^2.C] - Convective Heat Transfer Coefficient\n",
"print 'Electric Power to be supplied = Convective Heat loss';\n",
"#calculations\n",
"#Using Newton's Law of cooling eq 1.6\n",
"Q = h*A*delT; \t\t\t#[W] - Heat Transfer\n",
"Q = round(Q,1);\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer =\",Q,\" W\");\n",
"#END\n",
"\n",
"# Example 1.6 Page 20-21\n",
"\n",
"T1 = 300 + 273; \t\t #[K] - Temperature of 1st surface\n",
"T2 = 40 + 273; #[K] - Temperature of 2nd surface\n",
"A = 1.5; #[m^2] - Surface Area\n",
"F = 0.52; \t\t\t\t #[dimensionless] - The value of Factor due geometric location and emissivity\n",
"sigma = 5.67*(10**-8) #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant\n",
"#calculations\n",
"#Using Stephen-Boltzmann Law eq 1.9\n",
"Q = F*sigma*A*(T1**4 - T2**4) \t #[W] - Heat Transfer\n",
"#Equivalent Thermal Resistance using eq 1.10\n",
"Rth = (T1-T2)/Q; #[C/W] - Equivalent Thermal Resistance\n",
"#Equivalent convectoin coefficient using h*A*(T1-T2) = Q\n",
"h = Q/(A*(T1-T2)); #[W/(m^2*C)] - Equivalent Convection Coefficient\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer =\",Q,\" W\");\n",
"print '%s %.2f %s' %(\"\\n The equivalent thermal resistance =\",Rth,\" C/W\");\n",
"print '%s %.2f %s' %(\"\\n The equivalent convection coefficient =\",h,\" W/(m^2 * C)\");\n",
"#END\n",
"\n",
"# Example 1.7 Page 21-22\n",
"\n",
"L = 0.025; #[m] - Thickness of plate\n",
"A = 0.6*0.9; #[m^2] - Area of plate \n",
"Ts = 310; \t\t #[C] - Surface Temperature of plate\n",
"Tf = 15; #[C] - Temperature of fluid(air)\n",
"h = 22; \t\t\t\t\t #[W/m^2.C] - Convective Heat Transfer Coefficient\n",
"Qr = 250; \t\t\t\t #[W] - Heat lost from the plate due to radiation\n",
"k = 45; \t\t\t\t\t #[W/m.C] - Thermal Conductivity of Plate\n",
"#calculations\n",
"# In this problem, heat conducted by the plate is removed by a combination of convection and radiation\n",
"# Heat conducted through the plate = Convection Heat losses + Radiation Losses\n",
"# If Ti is the internal plate temperature, then heat conducted = k*A*(Ts-Ti)/L\n",
"Qc = h*A*(Ts-Tf); #[W] - Convection Heat Loss\n",
"Ti = Ts + L*(Qc + Qr)/(A*k); \t #[C] - Inside plate Temperature\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n Rate of Heat Transfer =\",Ti,\" C\");\n",
"#END\n",
"\n",
"# Example 1.8 Page 22\n",
"\n",
"Ts = 250; \t\t #[C] - Surface Temperature\n",
"Tsurr = 110; #[C] - Temperature of surroundings\n",
"h = 75; \t\t\t\t\t #[W/m^2.C] - Convective Heat Transfer Coefficient\n",
"F = 1; \t\t\t\t #[dimensionless] - The value of Factor due geometric location and emissivity\n",
"sigma = 5.67*(10**-8) #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant\n",
"k = 10; \t\t\t\t\t #[W/m.C] - Thermal Conductivity of Solid\n",
"#calculations\n",
"# Heat conducted through the plate = Convection Heat losses + Radiation Losses\n",
"qr = F*sigma*((Ts+273)**4-(Tsurr+273)**4) #[W/m^2] - #[W] - Heat lost per unit area from the plate due to radiation\n",
"qc = h*(Ts-Tsurr); #[W/m^2] - Convection Heat Loss per unit area\n",
"TG = -(qc+qr)/k; \t #[C/m] - Temperature Gradient\n",
"#results\n",
"print '%s %.2f %s' %(\"\\n \\n The temperature Gradient =\",TG,\" C/m\");\n",
"#END\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|